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Abstract

With continual advancements in network infrastructure, vast amounts of data is communicated every second.

These advancements have benefited genuine and malicious traffic alike; attempts to breach networks and in-

formation systems have skyrocketed in recent years. It is increasingly difficult to provide both security and

performance. Network intrusion detection systems (NIDS) are one of the first lines of defense in network secur-

ity, as such they are subject to increasingly intensive loads. Existing open source solutions are heavily reliant on

CPU-based detection engines which are expensive to scale appropriately for high bandwidth networks. However,

using GPUs (Graphics Processing Units), the same data could be processed in a far more scalable manner at

a fraction of the cost. The research presented aims to demonstrate that a GPU-based solution can be just as

effective, on commodity hardware.

This paper details the implementation of a signature-based solution utilising the HEPFAC algorithm, which

focuses on the optimisation of key components to maximise throughput. Modern networks typically operate up

to 40Gbps, as such a throughput target of at least 40Gbps was set. This target must be met to ensure security

incidents can be identified in real time.

To accomplish the imposed target, a CUDA/C++ implementation of the HEPFAC algorithm was developed.

The HEPFAC CPP solution identifies locations of matches within a provided input stream. In a full NIDS

solution, these matches would correspond to specific packets. However, in its current form HEPFAC CPP

serves as as a demonstration of the throughput that can be achieved using the specified optimisations. Said

optimisations are not only applicable to NIDS, but also to other applications including (but not limited to);

Anti Virus, File Carving, Memory Forensics and DNA sequencing.

Evaluation of benchmark results show that the techniques and optimisations used to develop HEPFAC CPP

allow it to exceed modern network throughput requirements, by a significant margin - laying the foundations

for an effective yet affordable real-time network intrusion detection system.
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1 Introduction

1.1 Background

With continual advancements in network infrastructure, vast amounts of data is communicated every second.

With these advancements, typical network throughput has risen to 10Gbps, with 40Gbps set to become the de

facto standard in the near future (Khalil 2015). However, improvements have benefited genuine and malicious

traffic alike; attempts to breach networks and information systems have skyrocketed in recent years. According

to the Cyber Breaches Survey 2018, 43% of businesses experienced some form of cyber attack last year (Cyber

Security Breaches Survey 2018: Statistical Release 2018), 19% higher than 2016. As such, the need for equally

high throughput network security systems will only grow.

Network Intrusion Detection Systems are a software solution for automatically identifying possible security

incidents. They act as the first line of defence in many network configurations; performing malware detection,

data categorization, and other use-specific rule-sets on traffic. There are three main detection methodologies;

signature-based, anomaly-based, and stateful protocol analysis (Scarfone and Mell 2012). Signature detection

involves comparing patterns called signatures against known bad signatures. Signature detection is very ef-

fective at detecting known threats (Scarfone and Mell 2012) but due to the pattern matching process, it is

computationally expensive.

1.2 Pattern Matching

Pattern matching itself is a relatively simple task, the issue lies in the sheer number of comparisons that need

to be made to find a match. The obvious solution is to split the task across multiple threads - executing the

comparisons in parallel. Two notable CPU-based open source Network Intrusion Detection Systems -Snort and

Suricata- have exploded in popularity. Despite the adoption of multi-threaded processing techniques, neither is

able to keep up with a fully saturated 10 Gbps data link (Khalil 2015); without specialized -often expensive-

hardware, these open source solutions are incapable of achieving the level of throughput expected of modern

networks.

As per operational requirements in modern computing, each core in a CPU can execute independently and

support a complex instruction set. As such, they are rather complex and thus large, limiting the number of

cores a CPU can have. In contrast, a GPU is made up of many smaller simple cores. Each GPU core runs

significantly slower and does not support nearly as many features as its CPU counterpart. Despite a slower per

core speed, the sheer number of available cores in a GPU allows for extremely fast parallel execution through

many task subdivisions. This behaviour is a reflection of the principles of strong scaling, which in turn is a

measure of how (for a given problem specification) the time to solution decreases as more processors are added

(CUDA C Best Practices Guide n.d.). As pattern matching can be described as a highly parallel task; it should

scale well with GPGPU parallelism.

1.3 Scope

Despite the potential of GPGPU, notable open source solutions still favour CPU detection engines. Snort only

recently received multi-threading support, with no GPGPU support in sight. Meanwhile Suricata did at least

explore GPGPU support. However, it is scarcely documented and development seems to have stalled; on the

support page CUDA support is listed as “unmaintained, currently in various stages of brokenness” (Suricata

Support Status n.d.). While it is possible that there has been some commercial development, there have been

no notable open source GPGPU NIDS advancements since 2013.

Prior research is simply not documented well enough nor portable enough to enable widespread adoption.

This research aims to develop a prototype highly-parallel GPGPU-optimized signature-based Network Intru-
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sion Detection System that can outperform existing CPU-based solutions. The proposed solution focuses on

maximising throughput, minimizing required operations, and ensuring support for commodity hardware. The

primary focus of this investigation can be summarized with the following research question:

How can GPGPU-based Network Intrusion Detection Systems be optimized for high throughput

networks?

In similar papers, optimization efforts focus on memory layout and padding. Said optimizations are often

device or architecture specific, and thus limited in relevance to previous generation and lower-end hardware

configurations. In contrast, the optimizations that this research aims to demonstrate will be device and ar-

chitecture agnostic (where possible), ensuring the findings are more widely applicable, and -at least to some

degree- portable.

Despite the scope of this research being limited to NIDS, as signature detection is a form of pattern matching,

the optimizations and other teachings may be relevant to other applications. GPGPU accelerated multi pattern

matching can be applied to other areas such as DNA sequencing, Digital Forensics, and Anti-Virus. While the

detailed optimizations are applied specifically to the pattern matching process, they may be applicable to other

GPGPU-based applications.
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2 Literature Review

With the onset of fibre optic networking, computer networks have increasingly fast connectivity speeds. Higher

throughput network traffic procures a requirement for higher throughput defense and monitoring - Network

Intrusion Detection Systems. The following chapter aims to provide insight into existing NIDS solutions, the

uses of GPGPU in information security - be it detection, prevention or forensic based, as well as optimization

techniques that could be broadly applied. Additionally, the strengths and shortcomings current solutions will

be detailed.

2.1 Use(s) of GPGPUs in Information Security & Networking

Intrusion Detection

As mentioned in section 1.3 there have not been any notable open source GPGPU NIDS advancements since

2013, and none of the big three (Snort, Suricatta, Zeek) currently support GPU acceleration. Despite the

lack of implementation, prior research into GPGPU based NIDS has yielded promising results. In ’Gnort:

High Performance Network Intrusion Detection Using Graphics Processors’ (Vasiliadis et al. 2008), Vasiliadis

achieves a throughput of 2.3Gbps through the utilisation of GPGPUs and a buffered memory design to “offload

pattern matching computation”. Gnort uses separate buffer types for different classifications of packets; once

a buffer is full, all packets are transferred to the GPU in one operation, if a buffer is not full after 100ms it

is transferred anyway - preventing stranded packets. Additionally, a “double buffering scheme” is used, which

ensures packets can be stored for processing, even if the GPU is currently operating on packets matching that

classification.

The paper Kargus: a highly-scalable software-based intrusion detection system (Jamshed et al. 2012) describes

another Snort based NIDS. Kargus utilizes packet acquisition techniques from “the PacketShader software

router” which also uses a buffered approach to prevent frequent costly kernel and userspace context switches.

Opportunistic load balancing is used to “prevent excessive power consumption”; should the rate of incoming

traffic be within a predetermined throughput threshold, packets will be processed by the CPU instead of the

GPU. Kargus is not open source meaning the exact methods of performing the above can not be reviewed

or further developed: “The IDS source code is not available to the public, as it contains a derivation from

industry-transferred code”.

Packet Processing

In NBA (network balancing act): a high-performance packet processing framework for heterogeneous processors

(Kim et al. 2015) -a continuation of the works presented in Kargus, the authors achieve “near 30 Gbps”

throughput using the techniques described previously with a sixteen core dual Intel Xeon system equipped with

two Nvidia GTX 680 GPUs, 32GB of RAM, and four dual-port 10GbE network interface cards. The paper

reveals that the packet parsing library used in Kargus ‘Click-Parser’ is open-source. However, no documentation

is provided and the parser has not been updated since its initial (prototype) submission, limiting its usefulness.

Digital Forensics

String/Pattern searching is as critical for intrusion detection as it is for digital forensics. In Accelerating digital

forensic searching through GPGPU parallel processing techniques (Bayne 2017), Bayne details an OpenCL-

based file carving tool - ’Open Forensics’. Open Forensics utilized the Parallel Failureless Aho-Corasick (PFAC)

algorithm for multi-string searching which ”demonstrates significantly greater processing improvements from the

use of a single, and multiple, GPUs”, and ”minimised the amount of time required to search for greater amounts

of patterns”. Additionally, empirical testing suggests that this method (PFAC) may be ”more efficient than

the widely-adopted Boyer-Moore algorithms when applied to string searching”. The presented tool appeared to

limited by the storage device read speed and thus performance was on par with a multi-threaded CPU solution;
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both achieved around 800 MiB/s. With an intrusion detection system the only limiting factor would be network

throughput, which can be substantially faster than storage read speeds.

2.2 Optimizations & Algorithms

2.2.1 Multi Pattern Matching

In the area of pattern matching there are two process types; single pattern matching and multi pattern matching.

Single pattern matching involves checking each pattern individually against a string, whereas in multi pattern

matching, all patterns are compared simultaneously. Multi pattern matching is well suited to comparing multiple

signatures, and thus, only multi pattern algorithms will be implemented.

Aho-Corasick

Aho-Corasick (AC) is an efficient multi-pattern matching algorithm which can compare a number of patterns to

a source in a single pass (Aho and Corasick 1975). It is widely known for its performance and has become the

de facto standard of multi-pattern matching. The standard Aho-Corasick algorithm employs a failure trie that

allows it check other possible patterns on no match states with a single thread. With many thread graphics

processors, the failure trie is far less useful, and actually just leads to unnecessary overhead.

Parallel Failureless Aho-Corasick

In ’Accelerating string matching using multi-threaded algorithm on GPU ’ (Lin et al. 2010), Lin describes Parallel

Failureless Aho-Corasick - a evolution of Aho-Corasick specifically for parallel processors. As the name suggests,

this version does not use the failure trie and through GPU architecture considerations, manages to achieve up to

a ”4000 time speed-up compared to AC algorithm on CPU”. Additionally, compared to other GPU approaches,

PFAC performs 3 times faster with significant improvements to memory efficiency. Aho-Corasick’s requirement

for failure nodes stems from the single pass requirement, it meant the algorithm did not need to go back when

only a partial match was found. Instead, PFAC assigns a thread to every index in the source; all locations are

compared simultaneously.

It is worth noting that the results from PFAC are likely positively skewed, in the ”comparisons with previous

gpu approaches” section the Lin states that the PFAC was tested with a GeForce GTX 295, the next most

modern GPU listed is the GeForce 9800GX, which according to userbenchmark is around 30% less powerful.

The comparison to the method listed as ”Huang et al. Modified WM” is particularly unfair as according to

userbenchmark the GeForce 7600GT is around 2000 times slower the the GTX 295 (User Benchmark Comparison

- GTX 295 vs 7600GT 2019). However, even considering the best case 30% hardware/architecture improvement,

PFAC is not just 30% faster than the ”Vasiliadis et al. DFA” compared method, it is closer to 300% faster as

stated. While the performance improvement is impressive overall, some of the comparisons are unfair.

Highly Efficient Parallel Failureless Aho-Corasick

In ‘High performance pattern matching and data remanence on graphics processing units’ (Bellekens 2016),

Bellekens presents the ‘Highly Efficient Parallel Failureless Aho-Corasick (HEPFAC) algorithm, which -as the

name suggests- builds upon PFAC. Version one of this algorithm stores the required trie structure rather

differently to PFAC; as a one dimensional row major ordered breadth-first array of structures (containing an

offset and bitmaps). Use of the trie structure allows for comparison of multiple patterns simultaneously as each

node can represent multiple patterns. For instance, any patterns that start with ‘A’ shall share the same first

‘A’ node. The trie structure is also compressed to save further space; patterns with exactly the same suffixes

are merged as can be seen in figure 1.
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Figure 1: Merged Suffixes (Bellekens 2016)

As traditional methods of representing the trie were not very space efficient, a new approach was required.

In HEPFAC, each node is not aware of their identity, only that of their children. Each node is made up of a

bitmap (or bitmaps depending on the alphabet size) which identify the children this node has, and an integer

which represents the index of the first child. As the patterns are alphabetically sorted before the trie is built,

the children of each node will be placed in alphabetical order too. By performing a population count on the

bitmaps within each node, the number of children can be found. Similarly, the location of a node’s given child

can be found by performing a population count up to the given child; if the child exists, its location will be

the sum of the population count and offset of the first child, if it doesn’t exist the search ends. This method

ensures each node will always be of a fixed size, which reduces the complexity of the GPU memory allocation,

and compared to PFAC, the size. In version one, both the patterns and text strings are stored in global memory

(simplest & slowest on-GPU storage) and thus is relatively simple implement.

The search process is as follows (for each thread); start comparisons at the root node, check if the current

compared character is any of the children of this node. If it is, let that node be the current node, otherwise

exit. This process is repeated until the current node is the end node; the last character in a pattern has been

reached - a match has been found. Bellekens also details a second version of the algorithm that makes use of

the texture cache -which is described in more detail in section 2.2.2.

Use of the texture cache allows for even greater performance improvements over PFAC. In HEPFACv2, the

build process is mostly the same, although some modifications are made to the storage method “The modification

helps finding the first child of the current node while using a two dimensional matrix instead of the row major

ordered array”. The main difference is the structure of the nodes; in version 1 (figure 2 - top) each node was

self contained, in version 2 (figure 2 - bottom) the nodes coexist in a two dimensional matrix. Each row of

the matrix is one Node in the trie. Assuming the ASCII alphabet is in use (256 total characters), the first 8

columns of each row contain the 8 32-bit bitmaps of each node, while the 9th column contains the offset.
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Figure 2: Memory Scheme Transformation (Bellekens 2016)

The author describes the HEPFACv2 algorithm as a GPGPU multi-pattern matching that demonstrates

“85% less space requirements than the original highly efficient parallel failure-less Aho-Corasick”, and demon-

strates “over 22 Gbps” throughput. Kargus, Gnort and NBA all made use of the original Aho-Corasick al-

gorithm, an implementation of this algorithm should prove even faster. Utilising HEPFACv2, excellent results

were seen in ‘GLoP: Enabling Massively Parallel Incident Response Through GPU Log Processing’ Bellekens et

al. 2014, in which the authors compared the use of the texture cache to global memory. Regarding a comparison

of the two types, it was found that “the implementation using the texture memory achieves double throughput

compared to the implementation that uses global memory”. In HEPFACv2, the patterns are stored in texture

memory and the comparison source is stored in global memory. However, if the comparison source was small

enough, it may fit in constant memory which could produce even greater results due to the significantly lower

access latency.

For all the performance improvements offered by HEPFACv2 over the likes of PFAC, there is one caveat - the

identification system. By merging trie suffixes, identification of individual patterns on the GPU is impossible

as there is no way to tell which pattern a shared node belongs to - it could belong to any number of patterns.

However, the significant size reduction would allow for more patterns to be compared at once -each pattern

has a significantly smaller footprint. This in turn could reduce both the copy time (less bytes to copy) and the

number of copies required - if using a large enough signature list. Another point of note is that without GPU

identification (only locating), the return array can be significantly smaller; with identification the return array

would be an Integer (4 bytes), whereas with location only a Boolean (1 byte) is required. Furthermore, in the

case of an IDS there is already going to be some form of packet identification required, so it is possible that

the overhead would be negligible in comparison to packet identification. Given the design of HEPFAC, it may

be possible to test both the non-compressed and compressed versions; the reduction merely rearranges nodes

in the trie, the non-compressed trie is search-able. Thus both GPU-identification and CPU-identification could

be tested, in terms of flexibility and potential for optimization HEPFAC seems to be the best candidate.
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2.2.2 Memory Optimization

Aside from algorithms and optimisations, GPU architecture must first be considered. Consideration of the

underlying architecture could make a big difference to performance. GPUs allow for a great deal of user

specification, especially so for memory access. In CUDA there are three main types of device memory; Global,

Shared, and Texture. Each type has pros and cons, and thus some are better suited for certain tasks than

others, each type will be implemented for comparison. Consideration of the GPU architecture will also help

maximise potential of algorithm implementations.

Coalesced Memory Access

To achieve optimal memory access speeds, reads and writes should be coalesced. When a thread requests access

to a location in memory it is given access to multiple locations which collectively form a chunk; all threads

in the same bock have access to this chunk. Fetching new blocks costs additional memory transactions which

ultimately reduce performance (CUDA C Best Practices Guide n.d.). As such, the requested data should be

optimised for adjacent storage - it should be coalesced.

Global Memory

In CUDA, global memory refers to off-chip DRAM (Iandola, F.N. et al, 2013). Just like in a CPU, the global

memory is backed by a L1 and L2 cache. Currently, as far as the author is aware, global memory can be

anywhere from 512MB-12GB - depending on the GPU. As global memory is off-chip, there can be a high cost to

read from it (compared to other methods); global memory requires up to 600 cycles to be accessed. However, it

is also the simplest storage method to implement, and thus will at very least be used as a point of comparison.

Shared Memory

When shared memory is used, a portion of the cache is semi-permanently allocated. The portion is what is

referred to as shared memory. As the cache is on-chip, it is significantly faster than global memory. In CUDA,

there are four cache preferences that can be applied; these cache preferences state how the cache should be

divided up (CUDA C Programming Guide n.d.). For example, CudaFuncCachePreferShared will allocate most

of the space to Shared memory and leave at least 16kb of the space for the L1 cache. While shared memory

has the potential to improve the solution efficiency, reducing the available cache may have knock-on effects

in other areas of the application. A version utilising shared memory will be implemented to demonstrate the

performance benefits and costs.

Texture Memory

Texture memory (or rather the texture cache) is off-chip just like global memory, however, unlike global memory

it is read-only. The texture cache which is optimised for read-only access, and making use of it does not require

sacrificing any of the main L1 or L2 cache. Similarly to global memory, it does not require accesses to be

coalesced for optimal performance. In ‘Communication-minimizing 2D convolution in GPU registers’ (Iandola

et al. 2013) the authors demonstrated a 7 fold improvement in bandwidth from shared memory to texture

memory. If their success can be replicated, an implementation using texture memory will likely be the fastest

version - if the read access speed is consistent. Improvements were also seen in ‘Adaptive Optimization l1

-Minimization Solvers on GPU’ (Gao et al. 2017), in which Gao et al explored the use of the texture cache

(as opposed to shared/global memory). They were able to reduce the execution time significantly as described:

“We see that for all test cases, the execution time ratios have been sustained at around 1.2”; execution time

was reduced by 20%.

Pinned Memory

By default, host allocated memory is pageable; ”The GPU cannot access data directly from pageable host
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memory, so when a data transfer from pageable host memory to device memory is invoked, the CUDA driver

must first allocate a temporary page-locked, or ’pinned’, host array” (Harris 2012). The data is copied to

the pinned host array, then to device memory. This introduces an unnecessary copy which in turn reduces

throughput. However, the additional transfer can be avoided all together by directly allocating arrays in pinned

memory.

Pointer Aliasing

Pointers are said to alias if the memory they point to overlaps, if a compiler cannot determine whether or not

pointers overlap, it must assume they do - this can limit performance. In the C99 standard the restrict keyword

provides a way for programmers to tell the compiler that a restrict pointer will not modify the value pointed

to by any other restrict pointer; effectively the value pointed to is read-only and as such can be cached. In

the C++ standard there is no such keyword, however, most compilers allow the keyword to be used for the

same purpose. In GCC (and subsequently NVCC) this is denoted by ˙˙restrict˙˙ . In (CUDA C Programming

Guide n.d.) it is noted that ”the compiler might not always be able to detect that the read-only condition

is satisfied for some data.” However, ”Marking pointers used for loading such data with both the const and

__restrict__ qualifiers increases the likelihood that the compiler will detect the read-only condition”. This

should introduce performance improvements in all three types of memory identified, but will likely introduce

the biggest improvement to Global Memory as it is the only method without any programmatically specified

cache access.

2.2.3 Transfer and Launch Minimization/Maximization

According to the official CUDA developers optimization guide one of the highest priority optimizations that

should be made is transfer minimization & maximization; the overall size of the copied data should be as

small as possible ”The peak theoretical bandwidth between the device memory and the GPU is much higher than

the peak theoretical bandwidth between host memory and device memory. Hence, for best overall application

performance, it is important to minimize data transfer between the host and the device”. At the same time it is

better to copy one large block than lots of small blocks ”because of the overhead associated with each transfer,

batching many small transfers into one larger transfer performs significantly better than making each transfer

separately” (CUDA C Best Practices Guide n.d.).

Concurrent Execution

In CUDA concurrency allows multiple operations to be performed simultaneously; kernel execution, host to

device copies, device to host copies, and CPU operations (Rennich 2011). Concurrency can be implemented

through the use of Streams which are effectively first-in first-out execution queues on the GPU; operations in

different streams may run concurrently - depending on the flags used at initialization. The number of possible

concurrent streams is limited by the GPU architecture used, for example Fermi was limited to 16. While many

streams can be created and used, GPU occupancy (total resource usage i.e. cache, registers) may restrict how

they can be used, although with compatible algorithms it should always produce improvements as it ”effectively

removes memory size limitations” (Luitjens 2015).

Persistent Kernel

In ‘GPU I/O persistent kernel for latency bound systems’ ‘GPU I/O persistent kernel for latency bound systems’,

a method of minimizing launch latency is presented. Martinelli found that by creating a persistent kernel (as

opposed to relaunching with each dataset) the kernel launch overhead is reduced to a single launch. Preliminary

results demonstrated a consistent improvement. The persistent kernel optimisations will be implemented if time

permits, however, the implementation method is not described so implementation within this this project is

unlikely.
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2.2.4 Intrinsic Functions

Intrinsic functions are way to tell the compiler to use its own implementation of a function. In both CUDA

(nvcc) and GCC, as well as other modern compilers, intrinsic -or builtin- functions are offered. These functions

are often directly implemented in the compiler in assembly, rather than belonging to a library. Builtin methods

often provide very good implementations of common functions, such as Find First Set or Find First Zero.

The HEPFAC algorithm discussed in section 2.2.1 makes extensive use of population counts; in the building,

reduction, and searching processes. The CUDA C Best Practices Guide states that the intrinsic functions should

be used ”whenever speed trumps precision” (CUDA C Best Practices Guide n.d.). As HEPFAC functions only

need integer accuracy (not floating point) these functions could be used to provide performance improvements

over manual implementation - although this is something that will have to be tested.

2.2.5 Bitwise Operations

Many common bitwise optimizations are implemented automatically by the compiler -or at least should be;

there are edge cases - particularly when non-standard types are used. Due to the possibility of such cases, it

is still be worth implementing the optimizations manually on CPU. On GPU the behaviour is similar, however

there has been mixed reports about if the the compiler implements these automatically or not, the CUDA C

Best Practices Guide states that ”The compiler will perform these conversions if n is literal” (CUDA C Best

Practices Guide n.d.), where n is an integer used in a arithmetic computation such as the modulo and division

in listing 1 below.

int popc to be fo r e (unsigned int bitmap [ ] , int idx ){
int i = 0 , // index

count = 0 ; // number o f s e t b i t s

do {
i f ( bitmap [ i /32 ] & 1 << ( i % 32)){

count++;

}
i++;

} while ( i < idx ) ;

return count ;

}

Listing 1: Unoptimized Population Count

Integer Division & Modulo (Powers of Two)

Integer division and modulo operations are known for being particularly costly, taking several additional oper-

ations over their bitwise counterparts. There is good reason for this; arithmetic operations use several safety

measures such as sign preservation and value accuracy. However, in this use case, there is no need for such

safety measures and so the bitwise version is generally better. The bitwise operations in listing 2 below are

functionally similar to the arithmetic operations in listing 1; right shifting five times is the same as dividing by

32, and a bitwise ’&’ with a power of two minus 1 is equivalent to modulo that power of two.
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int popc t o a f t e r (unsigned int bitmap [ ] , int idx ){
int i = 0 , // index

count = 0 ; // number o f s e t b i t s

do {
i f ( bitmap [ i >> 5 ] & 1 << ( i & 31)){

++count ;

}
++i ;

} while ( i < idx ) ;

return count ;

}

Listing 2: Bitwise ’Optimized’ Population Count

Binary Magic Numbers

The term Binary Magic Numbers first appeared in an article published in Dr Dobbs Journal 1983. In the

article, Freed states that similarly to mathematical magic numbers - binary numbers with strange and useful

properties exist (Freed 1983). Most magic numbers are mere mathematical or programmatic curiosities and no

real world applications, however there a few outliers in base 10 arithmetic. Freed notes that the binary numbers

0b0101010101010101, 0b0011001100110011, 0b0000111100001111, and 0b0000000011111111 could be used to

perform divide-and-conquer-esque sideways addition - which is another name for a population count; summing

the total set bits in a given variable. Hacker’s Delight (Warren 2012) further explains how the divide and

conquer method can be applied; the task subdivided into many smaller tasks; first every two bits are summed,

then every four, then every eight. The example given in figure 3 is a great demonstration of this technique.

Figure 3: Population Count (Warren 2012)

A highly efficient version of the divide and conquer algorithm appears in the AMD64 optimization guide

(Software Optimization Guide for AMD64 Processors 2005). This version focuses on minimizing register use

and further reducing the number of required operations - requiring only 12 operations which is significantly less

than previous versions. An implementation of the version described by AMD can be seen in listing 3 which

relies on the same principle but uses the hexadecimal representation of the binary magic numbers.
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int popcount (unsigned int temp){
// Implementation o f Populat ion Count as

// de s c r i b ed in so f tware op t im i za t i on guide f o r amd64 proce s so r s

temp = temp − ( ( temp >> 1) & 0x55555555 ) ;

temp = ( temp & 0x33333333 ) + ( ( temp >> 2) & 0x33333333 ) ;

return ( ( ( temp + ( temp >> 4) ) & 0xF0F0F0F) ∗ 0x1010101 ) >> 24 ;

}

Listing 3: AMD64 Population Count

Most & Least Significant Bit

Finding the most and least significant bits can be very useful in bitwise operations. For example, if searching

the for all set bits in a given data type knowing where to start and where to end could save many operations.

In Matters Computational (Arndt 2010), Arndt details two methods of isolating the most significant bit, one

uses an assembly instruction which may be device specific, the other repeatedly bitwise OR’s the variable with

itself shifted right by 1, 2, 4, 8, and 16 places - for 32 bit types, and then adds 1 and finally shifts right once

more. Say the variable started out at 0b00100101, after the initial OR shifts it would be 0b00111111, adding

one would take it to 0b01000000, and finally right shifting takes it to 0b00100000 - the isolation of the most

significant bit.

The technique Arndt demonstrates to isolate the least significant bit is far simpler; performing a bitwise n

& -n will isolate the least significant bit of n. The same technique also appears in Hackers Delight (Warren

2012), in which warren describes the technique as a ”formula to isolate the rightmost 1-bit, producing 0 if none

(e.g. 01011000 to 00001000)” which makes this very useful in other bitwise operations.

2.2.6 Control Flow

GPUs utilize a single instruction multiple data architecture (SIMD). This means it ”takes an operation specified

in one instruction and applies it to more than one set of data elements at the same time” (Furht 2008), which

introduces some control flow complications. In (Chen 2016) Chen discusses why branch divergence can cause

significant performance degradation. Threads are bundled into blocks, which are in turn bundled into warps

which ”follow the same instruction synchronously”. If a branching statement is encountered - for example an

if else block that causes a different outcome on different threads- a branch divergence occurs. Threads in a

warp cannot diverge; all threads meeting the condition must be executed first and only then can the warp go

back to execute any divergent threads; ”the branch divergence serializes all the possible execution paths” - this

can have a serious impact on execution time. To reduce execution time, use of branching statements should be

minimised. This also means branching statements should be constructed so that the ’true evaluated’ threads

can take a direct path - i.e. avoid nested branching statements to prevent unnecessary divergence serialization.

2.3 Summary

With ever increasing network bandwidth capabilities, it is apparent that there is a need for high throughput

network security solutions. Of the reviewed multi string/pattern matching implementations and algorithms,

the current best utilized GPGPU processing and was able to achieve 27Gbps throughput (Bellekens 2016).

However, modern networks are commonly capable of 40Gbps which -during high traffic situations- presents a

losing battle that would result in a backlog of unprocessed or dropped packets. Previous research has generally

sought algorithmic improvements to increase throughput. However, through consideration of the techniques

discussed above, implementation optimizations may yield the improvements required to close the gap between

processing and network throughput.
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3 Methodology

3.1 Overview

Algorithm

Due to time constrains only a single algorithm will be focused on; it is unlikely that optimisations could be

applied with the same finesse if multiple algorithms were implemented. Before any optimisations could be

selected a suitable algorithm was identified as to most effectively direct optimisation efforts. While Parallel

Failure-less Aho-Corasick (PFAC) is a commonly used (if not the most commonly used) GPGPU multi-pattern

matching algorithm that is somewhat documented, it isn’t the fastest - not by a long way. The HEPFAC

algorithm presented in (Bellekens 2016) was able to achieve 27Gbps, the closest to the 40Gbps minimum

required of modern networks. Additionally, an early C implementation of the HEPFAC algorithm was provided

by the author (hereby referred to as ’ HEPFAC CPP’) which will ease understanding and aid optimisation

efforts.

The HEPFAC algorithm introduces a number of quirks. For example, the trie reduction method -while

guaranteeing a size reduction- removes the ability to determine the specific pattern identified on the GPU, instead

providing the location that at which a match was identified - effectively acting as match sieve. HEPFAC also

truncates the given patterns to a user-specified length; in (Bellekens 2016) it was found that 99% of signatures

tested could be individually identified even with a significant length reduction. However, it is able to identify

significantly more patterns than PFAC (per search) due to lower space complexity, and do so faster.

Basic Implementation

Before an optimised version could be developed, a basic implementation was created. This provides a baseline

for testing. Although this version is intended to be the ’basic implementation’ it; includes global, shared and

texture memory based search methods, adheres to branch minimization principles, and uses pinned memory.

Generally, these optimisations/techniques were selected due to their prevalence in similar papers - the results

would show a misleading improvement if these relatively basic additions were not included. Pinned memory

is an exception to this, according to (CUDA C Programming Guide n.d.) the texture cache can only copy

from Pinned memory. If only the texture memory implementation had access to pinned memory it may give

it an unfair advantage; pinned memory reduces the number of copies required and in turn increases potential

throughput as can be seen in figure 4. To maintain consistency all basic search types utilize pinned memory.

Figure 4: Pageable vs Pinned Memory
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3.2 Optimisations

The primary purpose of optimisation is to increase throughput. This section will cover; how types of possible

optimisation were identified, how they were compared, and what version was implemented.

3.2.1 Selection Process

Identify

By analysing key components of the provided HEPFAC C implementation and the HEPFAC algorithm itself,

optimisation research could be focused on commonly used functions and operations. For example, population

counts are a critical component of the build, reduce, and search processes. For each character placed, and

each characters searched a population count takes place. As such, minimizing the time taken to complete

a population count could prove extremely beneficial to throughput. The CUDA documentation (CUDA C

Programming Guide n.d.), best practices guide (CUDA C Best Practices Guide n.d.) and Nvidia developer

articles such as (Harris 2012) provided suggestions and tips that lead to several other optimisations including

(but not limited to); Read Only, Copy Minimization, and Concurrency.

Compare

Some types of operations had several alternate methods and/or techniques that could be used exclusively. Of the

reviewed literature; generally speaking, research into these methods tends to focus on the number of operations

required to complete the task, or the time it took to complete. However, very few provided direct comparisons

to alternate methods and those that did, failed to select reasonable comparisons; positively skewing the results.

To select the most appropriate method, simple benchmarks implementing each were setup. These bench-

marks not only demonstrated a performance comparison but acted as method verification, some methods did not

work as expected -which will be discussed in more detail in Selected optimisations. The benchmarks used a strict

timing system; they measured the average completion time for each method (in nanoseconds) and accounted

for the timer launch period (28 nanoseconds). Averages were based on 1,000,000 runs -ensuring highly accurate

results. The best performing method in each of the benchmarks was then selected for full implementation in

the project prototype (hereby referred to as HEPFAC_CPP ).

3.2.2 Selected Optimisations

By studying the CUDA Programming Guide and analyzing the HEPFAC algorithm; key areas of potential

optimisation were identified. These areas are as follows;

• Population Count

– Counting the number of binary 1’s in a given variable

• Copy Minimization

– Reducing the size and/or required number of memory copies

• Read Methods

– Using various types of memory effectively

• Concurrency

– Utilising streams, asynchronous copies and asynchronous kernel launches where appropriate

• Bitwise

– Bitwise operations are often thought to be faster than their arithmetic counterparts -are they?
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Population Count

As previously discussed, there are several ways to perform a population count. Although prior research has

touched on the number of operations required to complete each population count method, no direct side by

side measured comparison was found. As such, a small benchmark demo was created to identify the best

performer, which could then be implemented in the prototype. The AMD64 Divide and Conqeur method

(Software Optimization Guide for AMD64 Processors 2005) proved to be the best performer -as can be seen

in figure 5- and so was highlighted as a possible GPU optimisation. Validity of the Actual value is forced by

decorating the function with ”__attribute__((optimise("0"))) ” which ensures that no optimisations are

applied; it will always provide compile to a completely unoptimised version. Similar tests were performed on

GPU which found the CUDA (nvcc) intrinsic method ’ popc’ to be significantly faster than alternatives. As

figure 5 shows, surprisingly G++ 7.3.1-6’s intrinsic method fails to provide the correct result at optimisation

level 2. The issue was also verified on another system using G++ 8.3.1-2.

Figure 5: Population Count Benchmark (Nanoseconds)

Copy Minimization

To reduce the size of copies to and from the device, the layout and structure of copied data was considered.

The data structure representing nodes (in the trie) were already minimized in the HEPFAC specification; each

node contains bitmaps representing the alphabet in use and an offset value. There is no need for nodes to self

identify beyond trie verification -e.g. in search methods- as each parent knows the identity of a given child.

As mentioned previously, due to the reduction process the HEPFAC algorithm identifies whether a match

was found at a given location but not which specific match was found. Subsequently, only a Boolean is needed

to store the match result for a given location. However, Boolean values are rather wasteful - they only use a

single bit, resulting in seven unused bits per byte. If each bit could act as one location instead of a full byte per

location, a significant reduction to output size could be made. A visualization of the proposed Bitwise indexing

method can be seen in figure 6.

Figure 6: Visualisation of Bitwise Indexing Method

By utilizing each bit in the byte the footprint of the output is reduced, this has a few of knock-on effects;

firstly - the time taken to allocate and copy the output is reduced and secondly - due to the reduction there is

even more space for the comparison data, which could increase throughput. Additionally, the host-side result

14



identification may be faster; listing 5 would have to compare 32 times the number of locations as listing 4 for

every 32 locations with 0 matches. A performance demo of the two methods can be seen in section A. The data

type used for the Bitwise indexing could be altered for different pattern frequencies. For example, if patterns

aren’t expected to be within 64 characters of each other, a 64 bit type such as a double could be used to further

improve performance.

int Hepfac : : get matches (unsigned output [ ] ) {
int matches = 0 ;

for ( int i =0; i < ELEMENTS/32; ++i ){
i f ( output [ i ] ){

for ( int j =0; j <32; ++j ){
i f ( output [ i ] & (1 << ( j % 32)) ){

++matches ;

match cal lback ( ( i ∗32)+ j ) ;

}
}

}
}
return matches ;

}

Listing 4: Bitwise Indexing Method

int Hepfac : : get matches (unsigned output [ ] ) {
int matches = 0 ;

for ( int i = 0 ; i < ELEMENTS; ++i ){
i f ( output [ i ] ){

++matches ;

match cal lback ( i ) ;

}
}
return matches ;

}

Listing 5: Boolean Indexing Method

Shared Memory

As an explicitly user-managed L1 cache of sorts, Shared memory effectively allows control of what is cached

-the trie can be directly copied to cache which will improve the access speed. Shared memory is not a perfect

solution, when shared memory is allocated it reserves sections of the primary cache. Subsequently, the GPU will

be less able utilize the primary cache which may reduce the performance of other search operations. However,

potentially lower cache utilization is the least of Shared memory performance concerns. As per (CUDA C

Programming Guide n.d.) Shared memory has ”the lifetime of the block”; attempting to access previously

copied data in a separate kernel launch will produce undefined behaviour. To ensure this does not happen the

trie must be copied to shared memory at every kernel launch, including concurrent kernel launches.

Texture Memory

Texture Memory is cached in a dedicated Texture Cache, it ”costs one memory read from device memory only

on a cache miss, otherwise it just costs one read from texture cache” (CUDA C Programming Guide n.d.). As

previously mentioned, texture memory does not require reads to be coalesced and copies to texture memory

are handled automatically through the texture object API. It is not clear how the texture objects are bound,

or whether they are persistent between kernel launches; however, the fast read speed and (more) flexible access

patterns should make this the fastest unoptimised search type.

Global Memory

Global memory is often made read/write when the compiler cannot determine if pointers overlap. In this mode,

it requires a high number of clock cycles to access. By comparison, Shared and Texture memory are effectively

managed cache space and have the access speeds to match; with no optimisations it is expected that they would

be faster. Global memory doesn’t have to be read/write, with a minor modification listing 9 the compiler can

be strong-armed into making it read-only. Using as does const with the C99 restrict qualifier effectively tells

the compiler that a given pointer’s data is probably read-only. If the compiler takes the hint, global memory

will be able to make much better use of its cache and will likely perform better than shared memory due to the

trie copy overhead.

Concurrency

The rules of concurrency in CUDA are quite simple; host to device (HtoD) copies may occur at the same time

as device to host (DtoH) copies (on supported hardware), at the same time as kernel execution. If there are
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multiple HtoD transfers they will be queued and executed sequentially, the same is true for DtoH transfers.

Kernels will only be queued if there is insufficient occupancy for concurrent execution. Since each stream is

effectively a work queue a common design pattern involves splitting up required work into many ’HtoD, Kernel,

DtoH ’ streams. By splitting up copies into smaller parts a kernel can start processing data sooner and in turn

the result can be copied back sooner. Repeating this processes can massively reduce the overall processing time

and maximises GPU occupancy throughout the given task, an example of this can be seen in figure 7.

Figure 7: Synchronous vs Asynchronous Execution

Bitwise

Generally, bitwise optimisations are a topic of debate for many developers; bitwise should be faster due to

fewer operations but the compiler should optimise situations where arithmetic can be swapped for a bitwise

equivalents. This topic is briefly discussed in (CUDA C Programming Guide n.d.): ”Integer division and modulo

operation are costly as they compile to up to 20 instructions. They can be replaced with bitwise operations

in some cases: If n is a power of 2, (i/n) is equivalent to (i¿¿log2(n)) and (i%n) is equivalent to (i&(n-1));

the compiler will perform these conversions if n is literal”. These optimisations are not expected to improve

performance but rather demonstrate that there is no difference due to compiler conversions.

3.3 Development

3.3.1 Design

Language & Platform

The development process of HEPFAC_CPP followed two main directives: maximise performance and (where

possible) adhere to coding principles & standards. Typically readable code structures are preferred over more

complex ones, however, some optimisations cannot be implemented cleanly. Thus adhering to readability

principles such as KISS (Rich 1995) is not always possible. As HEPFAC_CPP will be made open source, it

important that complex optimisations either reference the relevant material or offer inline explanations within

comment blocks.

When considering GPGPU development there are two main platforms to consider, OpenCL and CUDA.

While OpenCL is the more portable option -most graphics cards support OpenCL, CUDA seems more thought

out and the documentation is more comprehensive. Additionally, previously discussed GPU solutions often used

CUDA - providing a more direct comparison. Both C and C++ are supported by CUDA extensions. For both

C & C++ the NVCC compiler -which is an extension of GCC- can be used. C++ is a widely used language,

according to (Diakopoulos and Cass 2016) it is the 4th most popular programming language. C++ () was
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selected for development as its standard library functions and data types reduce boilerplate code, and it is more

readable than C.

Expandable & Flexible

In abiding by C++ coding standards and best practices, HEPFAC CPP utilizes object orientated programming

principles throughout. All algorithm related methods are part of the Hepfac class. This class abstracts complex

method parameters; it provides a simple interface for interacting with core components and hides unnecessary

details. A conscious decision was made to implement functions that were not needed specifically for testing but

may encourage use of the presented work. For example, a function reference can be provided to the set callback

function, this function is then passed the index of each match found upon completion of each search. Other

examples include the Texture Object template function section C and BitIndex type declaration section B.

These makes it easy to utilize the optimisations presented in HEPFAC CPP in other applications.

Interface

As the final application is effectively a test suite for HEPFAC optimisations, there is no need for a fancy GUI -

a simple text based interface will do. That being said, when debugging, verifying and benchmarking; a clean,

easily discernible output is beneficial. As such, an output system was designed around the Bootstrap colours

(Colors) - primary, success, failure (danger), warning, and info. Each of the output types can be used similarly

to std::cout except the appropriate colour and formatting is applied to each. An example of the colour system

in action can be seen in figure 8.

Figure 8: Command Line Interface Output Example

Extensive Verification Methods

Instead of manually verifying trie construction, reduction and search methods; verification functions such as

the one seen in figure 8, provide fast, repeatable and conclusive results. Trie construction and reduction can

both be verified by searching the trie for each pattern - if any of the patterns cannot be found then it’s classed

as a fail, otherwise it’s a pass. The search methods are verified by searching the pattern file -if the number of

matches is the same as the number of patterns then it passes verification, otherwise it fails.

3.3.2 Implementation

This section details feature implementations that deviated from design, expanded upon design or have not

otherwise been mentioned. Features that were implemented exactly as outlined will not be discussed further.

HEPFAC Trie Construction

The method used to build the trie in HEPFAC CPP is quite different to the original in HEPFAC C; in HEP-

FAC C, the patterns must partially searched for the previously placed character before the next character of

that pattern can be placed. In HEPFAC CPP, each pattern is represented by a struct containing the pattern

string and an integer ’id’ which is the last node associated with the pattern. The addition of ’id’ allows the build

trie implementation be to greatly simplified as each pattern’s next character can be added to it’s previously

placed character. Simplified pseudocode for the build process can be seen in listing 6 below - as a reminder, a
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node consists of 8 bitmaps and an offset which is the index of the first child of that node, a trie is an array of

those nodes.

t r i e [ pa t t e rn l eng th ∗ patte rn count ]

f o r i=0 to s e t p a t t e r n l e n g t h :

f o r pattern in pat t e rns :

cha rac t e r = pattern . s t r i n g [ i ]

node = t r i e [ pattern . id ]

i f node . bitmap conta in s cha rac t e r :

pattern . id = index o f that charac t e r

e l s e :

put cha rac t e r i n to node . bitmaps

c r ea t e new node

i f node . o f f s e t == root

node . o f f s e t = index o f new node

pattern . id = index o f new node

return t r i e

Listing 6: Build Trie Pseudocode

HEPFAC Trie Reduction

Due to the complexity of the trie reduction algorithm, there is was little that could be changed to improve the

HEPFAC CPP implementation. Trie reduction has a strict requirement for merging nodes; merge candidates

and each merge candidate’s parent node must contain exactly the same children. If this condition is not met,

pattern suffixes will incorrectly overlap and the trie will be invalidated.

HEPFAC Search

In HEPFAC C, the pattern reduction level was hard coded meaning it could only be changed at compile time.

Because the pattern reduction level was known at compile time, the search method loops could be unrolled for

a performance improvement. As Bellekens noted the loop unrolling provided minimal improvement (Bellekens

2016), it was decided that this technique would not be utilised in HEPFAC CPP. Instead the reduction level

could be set at run time, as part of the Hepfac class initialisation. This approach allows greater flexibility when

testing different lengths of signatures - it can be specified using the CLI rather than requiring a separate build

of the application.

In CUDA, there is no ’Calloc’ (allocate and zero) equivalent for device memory; it must be allocated and

then separately set to 0 -either iteratively or using memset- before any searching can begin. If the memory was

not zeroed, it is possible that false ’matches’ could appear. The HEPFAC CPP search utilizes a relatively novel

idea that removes the zeroing requirement, while introducing no additional operations. All successful pattern

matches will begin at the root node and finish at the end node, the end node’s offset will always be ’-3’ - which

is how the search detects a match. By setting the output for a given index to the Boolean evaluation ”offset

== -3”, all output locations will be set appropriately and any erroneous data will be overwritten. Pseudocode

demonstrating the search process can be seen below in listing 7. Both the build trie and reduce trie functions

use a verification system based on this search; the signatures/patterns are provided as the ’input text’.
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t i d = blockIdx . x ∗ blockDim . x + threadIdx . x

cha rac t e r = inpu t t ex t [ t i d ]

node = t r i e [ 0 ]

f o r i = t i d+1 to t e x t s i z e && node . bitmap conta in s cha rac t e r :

index o f cha rac t e r = popcount o f node . bitmaps up to charac t e r

node = t r i e [ index o f cha rac t e r ]

cha rac t e r = inpu t t ex t [ i ]

// Boolean ve r s i on

output [ t i d ] = ( node . o f f s e t == −3)
// Bitwi se v e r s i on

output [ t i d /32 ] |= ( node . o f f s e t == −3) << ( t i d % 32)

Listing 7: Search Trie Pseudocode

Bitwise Indexing

Due to the compile time size requirements, the bitwise indexing template could not be used with the variably

sized search output. It may still have uses in other applications where the output size is fixed but it is not

suitable for HEPFAC CPP. A very similar solution was implemented that makes uses malloc to allocate the

host output array. The new function used to determine how many bytes should be allocated for the output

array can be seen in listing 8, the read method remains the same as section B.

void Hepfac : : s e t o u t p u t s i z e ( i n t s i z e ){
#i f de f i ned (OPTIMIZATION OUTPUT)

r e s u l t e l emen t s = ( ( s i z e / s i z e o f ( i n t )∗8) + ! ! ( s i z e & ( s i z e o f ( i n t )∗8 −1))) ;

r e s u l t s i z e b i t s = s i z e ;

#e l s e

r e s u l t e l emen t s = s i z e ;

r e s u l t s i z e b i t s = s i z e ∗ s i z e o f ( i n t )∗8 ;
#end i f

#i f de f i ned (OPTIMIZATION OUTPUT)

ou tp s i z e = r e s u l t e l emen t s ∗ s i z e o f ( i n t ) ;
#end i f

}

Listing 8: Bitwise Index Size Calculation

Preprocessor Directive Toggles

To easily enable and disable the various optimisations, preprocessor directives were used to swap optimised and

unoptimised lines of code, depending on if the appropriate ’#define optimisation name’ was set or not. Using

this method does reduce readability of the code a little, however it means that a optimisations can be enabled

or disabled simply by commenting or uncommenting a line at the top of the file. Preprocessor directives are also

used to set the level of debug output required, in the HEPFAC CPP there are three options for this; off, basic

and verbose. To make each build easily discernible, another one of the directives places code that prints out

the enabled optimisations when a Hepfac object is constructed. The example shown in listing 9 demonstrates

how the read-only optimisation is enabled or disabled for the global memory search.
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g l o b a l void

#i fde f READONLY CONST

s e a r c h t r i e g l o b a l (NodeReduced∗ r e s t r i c t t r i e , const char∗ r e s t r i c t input text ,

const unsigned s i z e t e x t , const int t e x t o f f s e t , unsigned∗ out ) {
#else

s e a r c h t r i e g l o b a l (NodeReduced∗ t r i e , char∗ i nput text , unsigned s i z e t e x t ,

int t e x t o f f s e t , unsigned∗ out ) {
#endif

Listing 9: Preprocessor Directive to Enable Read optimisation

3.3.3 Testing

To ensure that each optimisation, search type, and class method performs as expected, unit tests were created

to comprehensively test every aspect of HEPFAC CPP. While tests now primarily rely on the output of the

validation functions, initially unit tests were validated manually - pen & paper algorithm execution versus

program output, but as more test cases were added this proved impractical. When testing both the files and

patterns were randomly generated to maximise the possibility of erroneous results. Test cases were as follows;

• 100x 6 length signatures vs 1000MB file

– W/ No optimisations

– W/ Bitwise optimisation

– W/ Popcount optimisation

– W/ Read-only optimisation

– W/ Asynchronous execution

– W/ Bitwise Output

– W/ All optimisations

• 25x 10,20,30,40,50 length signatures vs 1000MB file

– W/ No optimisations

– W/ All optimisations

• 25x,50x,100x,200x 6 length signatures vs 1000MB file

– W/ No optimisations

– W/ All optimisations

• 100x 6 length signatures vs 1MB,10MB,100MB,1000MB files

– W/ No optimisations

– W/ All optimisations
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4 Results

4.1 Unit Tests

During development, unit tests were created to ensure that all optimisations, search types, and class methods

perform as expected. HEPFAC CPP passed all unit tests; no failures were encountered in any configuration of

the application. The following table details the unit tests and their pass status:

100x 6 length signatures vs 1000MB Status

W/ No optimisations PASS

W/ Bitwise optimisation PASS

W/ Popcount optimisation PASS

W/ Read-only optimisation PASS

W/ Asynchronous execution PASS

W/ Bitwise Output PASS

W/ All optimisations PASS

25x 10,20,30,40,50 length signatures vs 1000MB file Status

W/ No optimisations PASS

W/ All optimisations PASS

25x,50x,100x,200x 6 length signatures vs 1000MB file Status

W/ No optimisations PASS

W/ All optimisations PASS

100x 6 length signatures vs 1MB,10MB,100MB,1000MB files Status

W/ No optimisations PASS

W/ All optimisations PASS

Table 1: Unit Tests

4.2 Test System Specifications

The performance of a given optimisation will at least in part be determined by the system on which it is

benchmarked. This can make comparing to other implementations challenging as it is very unlikely that

exactly the same system will be used for testing. While side by side comparisons on the same system cannot

be performed, providing detailed system specifications will enable comparisons based on theoretical system

performance to be made. For example, the GTX 1080 that was used to test a later build of HEPFAC C is

estimated to be around 25% faster than the GTX 980Ti used for HEPFAC CPP testing.

The full system specifications of the test system can be seen in table 2 below. To ensure consistent per-

formance all benchmarks shown were performed in a terminal environment - the graphical user interface was

disabled to avoid any overhead which could negatively impact results.
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Form Factor Desktop

Operating System Fedora 29

Kernel Linux 5.0.5-100

Processor Ryzen 7 1700

Processor Specifications 8 Core @ 3.0GHz, 16 Threads

CPU Memory 16GB DDR4 3200MHz CL15

GPU Nvidia GTX 980Ti

CUDA Cores 2816

GPU Memory 6GB GDDR5 7000MHz

Storage Device Plextor 256GB NVME SSD

Table 2: Test System Specifications

4.3 Search Optimisation Benchmarks

All benchmark results are based on averages. Due to the sheer number of builds to evaluate, it was not practical

to perform any more than 100 runs of each configuration. The gathered results are are split into four main

sections, one for each test case. To maintain readability only graphs are displayed in this section, however, the

corresponding measurements can be found in section D, section E, and section F.

4.3.1 Individual Optimisations

Figure 9: Individual Optimisations - 100x6 Trie vs 1GB Random Data

To identify which optimisations were the most (and least) effective, a build using no optimisations was

compared to builds with an individual optimisation enabled, and to a build with all optimisations enabled.

figure 9 demonstrates how each optimisation affected throughput, and how combining them can produce a

significant improvement. These results can be used to recommend worthwhile implementations for time limited
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projects. Using all optimisations, throughput exceeds the imposed 40Gbps target, achieving 58.628Gbps -

more than twice what prior research achieved. Surprisingly, the results also indicate that Bitwise optimisations

marginally improve throughput as can best be seen in table 3 below.

Optimisation GLOBAL SHARED TEXTURE

NONE 9.27025 3.85691 7.84752

BITWISE 9.30484 3.86138 7.88799

POPCOUNT 9.30887 3.8788 7.95518

READONLY 14.3663 12.1498 11.8897

ASYNC 15.676 4.60139 10.0294

OUTPUT 13.3722 4.4215 10.5487

ALL 58.629 25.0288 22.0038

Table 3: Individual Optimisations - 100x6 Trie vs 1GB Random Data

4.3.2 Variable Signature Length

Figure 10: Fixed Count Variable Length - 25xN Trie vs 1GB Random Data (Unoptimised)

As figure 10 and figure 11 show, as signature length increases the number of nodes that must be compared

before a match can be identified also increases. As was previously mentioned, when using shared memory the

trie must be copied each time; as signature length increases so to does trie size, and thus copy time. The results

for variable signature length are mostly as expected; throughput of shared search decreases as pattern length

increases, throughput of global and texture memory remains mostly the same. It is possible that with longer

patterns, global and texture memory would exhibit similar throughput reductions, however, due to cache size

limitations these could not be tested. Throughput measurement data can be seen in section D.
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Figure 11: Fixed Count Variable Length - 25xN Trie vs 1GB Random Data (Optimised)

4.3.3 Variable Signature Count

Figure 12: Variable Count Fixed Length - Nx6 Trie vs 1GB Random Data (Unoptimised)

figure 12 and figure 13 demonstrate how throughput changes as pattern count changes. As increasing the

pattern count while maintaining fixed pattern length also increases the trie size, shared memory is once again
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slower the larger the trie gets. Both texture and shared memory show similar throughput reductions across the

optimised and unoptimised builds. It appears that global could have benefited from further testing -e.g. 400,

800 patterns- but due to time limits these tests could not be conducted.

Figure 13: Variable Count Fixed Length - Nx6 Trie vs 1GB Random Data (Optimised)

4.3.4 Variable File Size

Figure 14: Variable File Size - 100x6 Trie vs N MB Random Data (Unoptimised)
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Figure 14 and figure 15 demonstrate how throughput changes as file size changes. For all memory types,

throughput is lowest on smaller file sizes. For all unoptimised searches, the throughput sweet spot exists

somewhere between 10MB and 100MB. For optimised searches, throughput increases as file size increases,

though the improvement is less and less each time. It is expected that if a 10GB/10000MB file was used that

throughput would start to trend downwards.

Figure 15: Variable File Size - 100x6 Trie vs N MB Random Data (Optimised)

4.4 Other Benchmarks

Two other benchmarks were also performed - Bitwise indexing vs Boolean indexing and Trie Construction vs

Trie Reduction. The bitwise indexing benchmark shows that the output optimisation isn’t just faster due to the

decreased copy size, but also due to the 32 at a time search enabled by checking if the storage integer at each

location is equal to zero - as can be seen in figure 16 below. If a CPU identification/full pattern verification

system was being used, this would drastically improve access time. The Trie construction benchmark shows

that the build trie process performs well regardless of the number of patterns added, but the reduction process

takes significantly longer as can be seen in figure 17 below. This is likely due to the added complexity of merging

and copying nodes.
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Figure 16: Variable Result Array Size - Bitwise Indexing vs Boolean Indexing

Figure 17: Variable Pattern Characters - Build Trie vs Reduce Trie

4.5 Overview

As all test cases have clearly show, the optimisations provide a clear advantage over the basic implementation.

All of the optimisations implemented provided at least marginal improvements over the original methods. In

most tests, each memory type performed as expected with and without optimisations; however, there were some

outliers which will be discussed in more detail in section 5.
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5 Discussion

5.1 Overview

The research question asked at the beginning of this project was; ”How can GPGPU-based Network Intrusion

Detection Systems be optimised for high throughput networks?”. When reviewing existing solutions such as

Suricatta it was found that there was nothing to optimise, not because the implementation was perfect but

because it had never been finished. As such, the primary focus of the project changed.

The project focus became the implementation and optimisation of a pattern matching algorithm for use in

signature based network intrusion detection systems; that could in turn meet throughput requirements of modern

networks(40Gbps). HEPFAC CPP has succeeded in this using commodity hardware to achieve throughput that

would otherwise only be seen in high end commercial solutions. As benchmark results have demonstrated, the

HEPFAC CPP implementation is more than capable - using optimisations it consistently achieves over 54Gbps.

While some of the optimisations focus on operations specific to the processes of the HEPFAC algorithm,

many are widely applicable, and the results demonstrate that they are worth implementing. Some of these

provided huge performance bonuses and required only minimal source code modifications, for example the use

of restrict and const to force fast read-only access.

5.2 Analysis of Results

During initial research, global memory appeared to be the most disadvantaged type and it was expected that it

would be the worst performer. However, even in the unoptimised build, global outperforms texture and shared

memory. These results conflict with the CUDA documentation which states that texture and shared memory

are significantly faster than global (CUDA C Programming Guide n.d.). However, these results can (mostly)

be explained.

Global

Global memory performs the best and benefits the most from optimisations. It was clear that it stood to benefit

the most from the read-only optimisation as it otherwise has very limited access to cache. It is assumed that

this fast, automatically managed cache access is what gives it an edge over other search types. Global also

benefited the most from concurrency, figure 18 shows global search profiled without concurrency and figure 19

shows it profiled again but with concurrency. No other optimisations were enabled between these two tests and

yet there is a 4ms execution time difference.

Figure 18: Nvidia Visual Profiler - Unoptimised Global Search

Figure 19: Nvidia Visual Profiler - Global Search W/ Concurrency
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Shared

Shared memory performs the worst on average across all tests. The suspected cause of this lackluster per-

formance is the trie copy. As the data copied from global memory to shared memory is only guaranteed for

the lifetime of the kernel (CUDA C Programming Guide n.d.), the trie must be copied from global to shared

memory each time the kernel is launched. As can be expected, this introduces additional overhead. Currently

there is no way to copy directly from the host to shared memory. Another possible cause is the substantial

reduction to occupancy; using shared memory reserves a significant portion of the cache which can then not be

used to quicken other aspects. While 100% occupancy does not demonstrate that the GPU is being used to its

full potential, low occupancy (such as in figure 20) is a tell tale sign that the GPU is not being used to its full

potential.

Figure 20: Nvidia Visual Profiler - Optimised Shared Search Occupancy

Texture

The texture memory results are rather confusing; in reviewed literature, texture memory typically provided

the fastest solution. To better investigate this strange behaviour, the Nvidia Visual Profiler was employed. As

can be seen in figure 21, the first texture search kernel execution takes significantly longer than the rest. It

is theorized that this initial overhead is the texture object is being bound to the texture cache. In the older

’texture bind’ method, the texture would be bound to the texture cache well in advance of the kernel execution

- explaining the performance discrepancy. It is possible that if the ’texture bind’ method was used, the texture

search could have performed better.

Figure 21: Nvidia Visual Profiler - Optimised Texture Search
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5.3 Recommendations

As each of the implemented optimisations has already been explained in great detail, this section will instead

suggest when and why said optimisations should be used (if at all). The following suggestions are evidenced by

the results presented in section 4:

• Bitwise

– Usually not worth implementing, provides insignificant improvements

• Population Count

– AMD64 Population count is significantly faster than other CPU methods

– CUDA’s intrinsic popc() method is faster than other GPU methods

– These methods are valid for 32-bit types, but could be altered for 64-bit types

• Read-Only Data

– Use of const and restrict suggest to the compiler that data should be read-only

– Read-only data can be accessed significantly faster than read/write data

– Should only be used on data that will not be modified for duration of the kernel

• Concurrent Execution

– Generally applicable and worth implementing, provides significant improvements

– Effectively removes device memory limits by queuing tasks in streams

• Bitwise Indexing

– Applicable when only location is required; use in place of a Boolean array

– Significantly reduces allocation and copy time ( 8x reduction)

– Significantly speeds up index identification ( 200x faster on single thread)

• Branch Divergence Minimisation

– Generally applicable and worth implementing, provides significant improvements

– Avoid nesting branching statements, prefer single multiple-condition statements

– Expect true-evaluated statements to be executed first, structure accordingly

• Pinned Memory

– Applicable for long-term allocations and frequently used host/device structures

– Reduces number of copies required to reach device, improving performance

– Do NOT frequently allocate/deallocate as this introduces significant overhead

• Structure Minimisation

– Generally applicable, can provide significant improvement

– Structures containing only essential members are smaller - less to copy

– Smaller copies equal less time spent copying, improving performance
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5.4 Problems Faced

While the CUDA documentation is relatively good, there are still areas of it that are significantly lacking. The

texture memory API documentation was pretty much useless; it doesn’t specify how all read modes are used,

and while it does list all members, it doesn’t mention which are optional and which are required. Texture

memory was implemented through trial and error; even now it is possible that the method used is incorrect.

By comparison, shared memory had many usage examples and the documentation was clear on when and how

it should be used.

The current implementation of the trie reduction function will only work if there are two or more patterns.

A single pattern unit test was not considered as the functions purpose is to merge multiple pattern suffixes.

The materialisation of this error is quite humorous; it deletes all nodes except root. The function attempts to

merge similar nodes that have similar parents; when a single pattern trie is reduced ’current node’ is always

the same as ’previous node’, and of course the parent would also match. As it ascends the trie it deletes these

duplicate nodes until it reaches root. The issue is easily resolved by adding a unique condition for single pattern

tries (do not attempt to reduce - there is nothing to merge with).

One of the biggest issues faced was finding relevant, quantifiable literature. Many supposedly relevant

GPGPU papers didn’t provide comparable results, did not fully detail the algorithms or implementation used

because of corporate interests, or only tested very specific cases. These factors made it difficult to discern what

techniques should be included in the basic implementation, and at what point should a technique should be

considered an optimisation.

5.5 Algorithm

The main limitation of the current version of the HEPFAC algorithm is its rigidity; with the additional un-

derstanding implementation brings, some aspects of the algorithm become frustrating to work around. For

example; trie reduction prevents signatures of differing lengths - all signatures are trimmed to a set size, and

even in the build process, prefix patterns cannot exist.

Trie Reduction

As the trie reduction function has no way of calculating the final size of a given reduction by the count or length

of patterns, there is no way to calculate how many patterns can be added to the trie for a given memory type.

Unless the pattern file has been specifically crafted for trie reduction, the worst case has to be assumed which

is 2 + (count * length) - count. Reduction cannot be reliably used as a way to fit more patterns into a given

memory type unless the worst case size is assumed.

Prefix Patterns

Another issue with the HEPFAC algorithm is the lack of support for prefix patterns - patterns that exist within

the first few characters of another pattern. Adding support for prefix patterns would require major modifications

to the build and search processes. These modifications would introduce more branching and thus reduce peak

performance. HEPFAC performs best as an pattern index search, rather than a pattern identification search;

it is best suited for finding where (rather than what) patterns are. Considering the strengths of the algorithm,

another possible solution to the prefix support issue was devised; keep only the prefix patterns. This seems like

an anti-solution, as it effectively discards larger patterns. However, they never mattered anyway; if a location

is a match of a prefix pattern or of a full size pattern the result is the same, the index is returned. The index

results could then be used to direct a fast CPU-based identification which can then determine which pattern

specific pattern was matched.
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6 Conclusions

Being able to quickly and accurately detect attacks is paramount to many organisations; initial research found

that network intrusion detection systems are less and less able to keep up with modern network throughput.

Current solutions require specialized hardware that often costs several thousands, and while there have been

attempts to utilise GPU, support has dwindled. The pattern matching process is an essential part of signature

based intrusion detection, HEPFAC CPP was developed throughout this project as a fast signature detection

prototype. With all optimisations enabled, HEPFAC CPP achieved a peak throughput of 58.629Gbps -nearly

20Gbps more than modern network requirements- and for that reason it is considered a success.

This research has demonstrated how various optimisations and design decision can improve the throughput

of a signature detection prototype -and potentially other GPU based applications. Of the eight optimisations

tested, all were found to improve the performance -although to varying degrees. Some of the optimisations

significantly reduce the readability of the code, and in turn may deter developer interest. To ease and encour-

age developer implementation, optimisations have been extensively documented, simplified through method

abstraction or provided as template functions that can be used in any application - not just HEPFAC CPP.

It is hoped that the results of this investigation can be utilised in current and future development; be it a

network intrusion detection system, digital forensics file carver, or even DNA sequence matching. The signature

detection prototype, data used to test it, and optimisation proof of concepts will be made open source to

encourage implementation and further research. New research often focuses on algorithmic improvements, this

investigation has demonstrated that the performance of an algorithm is only as good as its implementation.

6.1 Future Work

HEPFAC CPP was designed as a showroom of sorts, for various optimisations. The objective was never to

create a full network intrusion detection system but to demonstrate how a crucial component of one could be

implemented. However, it was intended that its teachings could be used to further the development of current

open source solutions such as Suricatta or Snort. Given the only external library requirement is CUDA, it

should be relatively easy to apply the necessary changes - by altering current methods or by replacing them

with equivalents from HEPFAC CPP. Either way, HEPFAC has laid the foundations for a highly effective yet

affordable real-time network intrusion detection system.

While this paper focused on NIDS, future research could explore other applications. It is believed that

the prefix support solution outlined in section 5.4.1 would be particularly effective in forensic file recovery

applications. If forensic file recovery was explored, removal of the trie reduction function (as per the reasons

outlined in section 5.4.1) would be tested. However, the larger trie size would increase cache occupancy, which

may in turn reduce performance rather than improve it.

All tests of HEPFAC CPP were performed on the same system as outlined in section 4.2, it would be bene-

ficial to test on other systems and platforms such as windows. The GTX 980Ti used in testing is approximately

25% slower than the GTX 1080 (User Benchmark Comparison - GTX 980Ti vs GTX 1080 2019) which was

used in testing of HEPFAC C. It would be interesting to see if performance scales linearly; HEPFAC CPP could

reach throughput around 72Gbps.
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Appendices

A Bitwise vs Boolean Indexing Comparison

Figure 22: Bitwise vs Boolean Indexing Comparison (No Multi-threading)

35



B BitIndex Type Decleration

#include <f unc t i ona l>

#include <array>

template <typename type , unsigned int b i t s i z e >

struct BitIndex {
typedef type va lue type ;

typedef va lue type& r e f e r e n c e ;

typedef unsigned int s i z e t yp e ;

stat ic constexpr s i z e t yp e

a r r a y s i z e = ( b i t s i z e / ( s izeo f ( va lue type )∗8) ) + ! ! ( b i t s i z e & ( ( s izeo f ( va lue type )∗8)−1));

std : : array<value type , a r r ay s i z e > data ;

std : : funct ion<void ( int)> match found ca l lback ;

// C a p a c i t y

const unsigned int b l o c k s i z e = s izeo f ( va lue type )∗8 ;

constexpr s i z e t yp e s i z e ( ) const noexcept { return data . s i z e ( ) ; }
constexpr s i z e t yp e b i t s i z e ( ) const noexcept { return b i t s i z e ; }
constexpr bool empty ( ) const noexcept { return 0 == s i z e ( ) ; }

// H e l p e r s

void s e t c a l l b a c k ( std : : funct ion<void ( int)> c a l l b a ck func ){
match found ca l lback = ca l l ba ck func ;

}

constexpr s i z e t yp e u t i l p op c ( s i z e t yp e temp){
// AMD64 O p t i m i z a t i o n Gu i d e − Pop c o un t

temp = temp − ( ( temp >> 1) & 0x55555555 ) ;

temp = ( temp & 0x33333333 ) + ( ( temp >> 2) & 0x33333333 ) ;

return ( ( ( temp + ( temp >> 4)) & 0xF0F0F0F) ∗ 0x1010101 ) >> 24 ;

}

constexpr s i z e t yp e u t i l p op c t o ( s i z e t yp e& temp , s i z e t yp e& idx ){
const int bmi = idx >> 5 ; // max d a t a i n d e x

int count = 0 ; // number o f s e t b i t s

for ( int i = 0 ; i < bmi ; ++i ){
count += ut i l p op c ( data [ i ] ) ;

}
return count + ut i l p op c ( data [ bmi ] & ((1<< idx )−1));

}

constexpr s i z e t yp e popcto ( s i z e t yp e& idx ){
return u t i l p op c t o ( data , idx ) ;

}

// G e t t e r s

constexpr s i z e t yp e ge t i dx ( s i z e t yp e idx ) {
return data [ idx /(8∗ s izeo f ( va lue type ) ) ] & 1 << ( idx & b l o c k s i z e −1);

}

constexpr s i z e t yp e g e t a l l ( ) {
// mus t h a v e s e t a l ambda o r f u n c t i o n r e f e r e n c e a s c a l l b a c k f u n c

for ( int i =0; i<data . s i z e ( ) ; ++i ){
for ( int j =0; data [ i ] && j<b l o c k s i z e ; ++j ){

i f ( data [ i ] & 1 << ( j & b l o c k s i z e −1)){
match found ca l lback ( ( i ∗ b l o c k s i z e )+ j ) ;

}
}

}
}

// S e t t e r s

constexpr void s e t i d x ( s i z e t yp e idx ) {
data [ idx / b l o c k s i z e ] |= 1 << ( idx & ( b l o c k s i z e −1));

}

constexpr void s e t a l l ( s i z e t yp e idx ) {
data [ idx / b l o c k s i z e ] |= ((1 << ( b l o c k s i z e − 1)) | ˜(1 << ( b l o c k s i z e − 1 ) ) ) ;

}

constexpr void unse t idx ( s i z e t yp e idx ) {
i f ( data [ idx / b l o c k s i z e ] & 1 << ( idx & b l o ck s i z e −1))

data [ idx / b l o c k s i z e ] ˆ= 1 << ( idx & b l o ck s i z e −1);

}

constexpr void un s e t a l l ( s i z e t yp e idx ) {
data [ idx / b l o c k s i z e ] &= 0 ;

}
} ;

Listing 10: BitIndex.cpp

36



C Texture Object Template Function

template<typename type>

cudaTextureObject t ∗ createTextureObject ( type array1D [ ] , s i z e t a r ray1D s i ze ){
cudaTextureObject t ∗ tex p = new cudaTextureObject t ( ) ;

struct cudaResourceDesc resDesc = {} ;
resDesc . resType = cudaResourceTypeLinear ;

resDesc . r e s . l i n e a r . devPtr = array1D ;

resDesc . r e s . l i n e a r . s i z e InByte s = array1D s i ze ;

resDesc . r e s . l i n e a r . desc = cudaCreateChannelDesc< type >();

// C r e a t e t e x t u r e d e s c r i p t i o n

struct cudaTextureDesc texDesc = {} ;
texDesc . readMode = cudaReadModeElementType ;

cudaCreateTextureObject ( tex p , &resDesc , &texDesc , NULL) ;

return tex p ;

}

Listing 11: TextureTemplate.cu
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D Fixed Count Variable Length Results

Pattern Length GLOBAL SHARED TEXTURE

10 9.42435 6.60067 9.73495

20 9.44196 3.76957 9.71931

30 9.41899 2.53527 9.72632

40 9.43964 1.81093 9.72426

50 9.41622 1.47842 9.72465

Table 4: Fixed Count Variable Length - 25xN Trie vs 1GB Random Data (Unoptimised)

Pattern Length GLOBAL SHARED TEXTURE

10 54.9064 41.75 29.2316

20 55.3337 21.8267 29.3134

30 55.4667 11.8125 29.4745

40 56.1452 7.014 29.8152

50 56.1676 5.9999 30.1763

Table 5: Fixed Count Variable Length - 25xN Trie vs 1GB Random Data (Optimised)
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E Variable Count Fixed Length Results

Pattern Count GLOBAL SHARED TEXTURE

25 9.40249 6.65085 9.60766

50 9.38718 4.94591 8.589

100 9.27025 3.85691 7.84752

200 9.3885 2.00948 6.31987

Table 6: Variable Count Fixed Length - Nx6 Trie vs 1GB Random Data (Unoptimised)

Pattern Count GLOBAL SHARED TEXTURE

25 56.3984 52.3513 30.1517

50 57.8171 39.0266 26.1455

100 58.629 25.0288 22.0038

200 54.6009 10.7612 17.3438

Table 7: Variable Count Fixed Length - Nx6 Trie vs 1GB Random Data (Optimised)
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F Variable File Size Results

File Size GLOBAL SHARED TEXTURE

1MB 8.21102 3.08955 6.62684

10MB 8.49311 3.76471 7.66153

100MB 9.37084 3.7784 7.58254

1000MB 9.19066 3.72071 7.39829

Table 8: Variable File Size - 100x6 Trie vs N MB Random Data (Unoptimised)

File Size GLOBAL SHARED TEXTURE

1MB 44.4311 22.6206 6.78204

10MB 55.0186 24.1451 15.2671

100MB 57.0328 24.2733 20.1553

1000MB 58.629 25.0288 22.0038

Table 9: Variable File Size - 100x6 Trie vs N MB Random Data (Optimised)
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