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ABSTRACT 
Context 
As computer networks have experienced rapid growth, so too 
has the volume of data processing required; it is increasingly 
difficult to provide both security and performance. NIDS 
(Network Intrusion Detection Systems) are one of the first 
lines of defense in network security, as such, they are subject 
to increasingly intensive loads. While availability and ease of 
deployment has improved, existing open source solutions are 
heavily reliant on CPU-based detection engines which are 
expensive to scale appropriately for high bandwidth 
networks. However,  using GPGPUs (General Purpose 
Graphics Processing Units), the same data could be 
processed in a far more scalable manner at a fraction of the 
cost 
 
Aim 
The aim of this project is to develop a GPGPU based 
detection engine for NIDS, and thus provide significant 
performance improvements on commodity hardware. A 
signature based solution is proposed, focusing on optimizing 
key components to maximize throughput.  
 
Method 
Project execution will begin with extensive research into the 
design and implementation of NIDS, as well as optimization 
for common -and subject specific- GPGPU design patterns. 
The findings will be used to cohesively develop a NIDS for 
linux-based operating systems, utilising CUDA and C++. 
Finally, performance of the solution will be evaluated and 
tested against packet generation tools and publically 
available datasets. 
 
Results 
The finished solution will be evaluated against a variety of 
publicly available datasets and packet generation tools. 
Performance of the application, measured as throughput, will 
be used to compare the base application, optimisations, and 
existing solutions. Worthwhile optimisations (those that 
produced substantial improvements) will be highlighted to 
guide future work. 
 
Conclusion 
As the demand for high performance networks faces 
exponential growth due to ever-improving data-links, so too 
does the need for high performance Network Intrusion 
Detection Systems. The system proposed in this paper will 
make use of both GPGPU and optimisations to maximise 

throughput on commodity hardware. 
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1. CONTEXT 
Attempts to breach networks and information systems have 
skyrocketed in recent years. According to the Cyber 
Breaches Survey 2018, 43% of businesses have experienced 
some form of cyber attack this year (Department for Digital, 
Culture, Media & Sport, 2018), 19% higher than 2016. 
Improvements in network infrastructure have benefitted 
genuine and malicious traffic alike. With the advancement of 
data links, average network throughput has risen to 10Gbps, 
with 40Gbps set to become the defacto standard in the near 
future (Khalil, 2015). As such, the need for equally high 
throughput network security systems will only grow. 
 
Network Intrusion Detection Systems are a software solution 
for automatically identifying possible security incidents. 
They act as the first line of defence in many network 
configurations; performing malware detection, data 
categorization, and other use-specific rulesets on traffic. 
There are three main detection methodologies; 
signature-based, anomaly-based, and stateful protocol 
analysis (NIST, 2007). Signature detection involves 
comparing patterns called signatures against known bad 
signatures. Signature detection is very effective at detecting 
known threats (NIST, 2007) but due to the pattern matching 
process, it is computationally expensive. 
 
Pattern matching itself is a relatively simple task, the issue 
lies in the sheer number of comparisons that need to be made 
to find a match. The obvious solution is to split the task 
across multiple threads - executing the comparisons in 
parallel. Two notable CPU-based open source Network 
Intrusion Detection Systems -Snort and Suricata- have 
exploded in popularity. Despite the adoption of 
multithreaded processing techniques, neither is able to keep 
up with a fully saturated 10 Gbps data link (Khalil, 2015). 
Without specialized -often expensive- hardware, these open 
source solutions are incapable of achieving the level of 
throughput expected of modern networks.  
 
As per operational requirements in modern computing, each 
core in a CPU can execute instructions independently and 
support a complex instruction set. As such, they are rather 
large; limiting the number of cores a CPU can have. In 
contrast, a GPU is made up of many tiny simple cores, 



 

making it appear perfectly suited for pattern matching. 
Pattern detection can be described as a highly parallel task; it 
should scale well with GPGPU parallelism. 
 
The aim of this project is to investigate whether a 
highly-parallel GPGPU-optimized signature-based Network 
Intrusion Detection System can outperform existing 
CPU-based solutions. The proposed solution focuses on 
maximising throughput and improving availability through 
support for commodity hardware.  
 
As signature detection is a form of pattern matching, the 
teachings may be relevant beyond the scope of this project. 
High throughput pattern matching can be applied to other 
areas such as DNA sequencing or Hard Drive and Memory 
Forensics. 
 
2. BACKGROUND 
Despite the potential of GPGPU, notable open source 
solutions still favour CPU detection engines. Snort only 
recently received multithreaded support, with no GPGPU 
support in sight. Meanwhile Suricata did at least explore 
GPGPU support. However, it is scarcely documented and 
development seems to have stalled; on the support page 
CUDA support is listed as “unmaintained, currently in 
various stages of brokenness” (openinfosecfoundation.org, 
n.d.). While it is possible that there has been some 
commercial development, there have been no notable open 
source GPGPU NIDS advancements since 2013. 
 
2.1 Operation of NIDS 
The operation of Network Intrusion Detection Systems can 
be broken down into three main processes; packet 
acquisition, ruleset processing, and response. Most of the 
processes involved in packet acquisition are very much 
hardware reliant. Typically (on linux based operating 
systems),  packets will be fetched directly from the kernel 
buffer using libraries such as libpcap, netmap, or abstraction 
layers based upon these libraries. As the name suggests, 
ruleset processing interprets and enforces rules on traffic, for 
example performing an action when a file that matches a 
specified signature is seen. Responses quite simply dictate 
what actions are taken, such as an alert email. 
 
2.2 Use of GPGPUs in NIDS 
Prior research into GPGPU based NIDS has yielded 
promising results, however, said research has explored 
constituent optimizations, whereas this project seeks a more 
cohesive approach. 
 
In ‘Gnort: High Performance Network Intrusion 
Detection Using Graphics Processors’ (Vasiliadis et al. 
2008), Vasiliadis achieves a throughput of 2.3Gbps through 
the utilisation of GPGPUs and a buffered memory design to 
“offload pattern matching computation”. Gnort uses separate 
buffer types for different classifications of packets; once a 
buffer is full, all packets are transferred to the GPU in one 
operation, if a buffer is not full after 100ms it is transferred 
anyway - preventing stranded packets. Additionally, a 
“double buffering scheme” is used, which ensures packets 
can be stored for processing, even if the GPU is currently 
operating on packets matching that classification. 
 
The paper ‘Kargus: a highly-scalable software-based 
intrusion detection system’ (Jamshed et al. 2012) describes 

another Snort based NIDS. Kargus utilizes packet acquisition 
techniques from “the PacketShader software router” which 
also uses a buffered approach to prevent frequent costly 
kernel and userspace context switches. Opportunistic load 
balancing is used to “prevent excessive power consumption”; 
should the rate of incoming traffic be within a predetermined 
throughput threshold, packets will be processed by the CPU 
instead of the GPU. Kargus is not open source meaning the 
exact methods of performing the above can not be reviewed 
or further developed:“The IDS source code is not available 
to the public, as it contains a derivation from 
industry-transferred code”. 
 
In ‘NBA (network balancing act): a high-performance packet 
processing framework for heterogeneous processors’ (Kim, J 
et al. 2015) -a continuation of the works presented in 
Kargus, the authors achieve “near 30 Gbps” throughput 
using the techniques described previously with a sixteen core 
dual Intel Xeon system equipped with two Nvidia GTX 680 
GPUs, 32GB of RAM, and four dual-port 10GbE network 
interface cards. The paper reveals that the packet parsing 
library used in Kargus ‘Click-Parser’ is open-source. 
However, no further documentation is provided and the 
parser has not been updated since 2015, limiting its 
usefulness. 
 
3. METHOD 
Project execution will begin with extensive research into the 
design and implementation of NIDS, as well as optimization 
for common -and subject specific- GPGPU design patterns.  
This research will be broken down into three main areas; 
GPU Architecture, Algorithms, and GPU Optimisation. The 
findings will be used to cohesively develop a NIDS for 
linux-based operating systems, utilising CUDA and C++. 
The final solution will be available as open source to 
encourage adoption of the explored techniques. 
 
 
3.1 GPU Architecture 
Before delving into algorithms and optimisations, the GPU 
architecture must first be considered. Consideration of the 
underlying architecture could make a big difference to 
performance. GPUs allow for a great deal of user 
specification, especially so for memory access. In CUDA 
there are three main types of device memory; Global, 
Shared, and Texture. Each type has pros and cons, and thus 
some are better suited for certain tasks than others, as 
proof,each type will be implemented for comparison. 
Consideration of the GPU architecture will also help 
maximise potential of algorithm implementations. 
 
3.1.1 Global Memory 
In CUDA, global memory refers to off-chip DRAM 
(Iandola, F.N. et al, 2013). Just like in a CPU, the global 
memory is backed by a L1 and L2 cache. Currently, as far as 
the author is aware, global memory can be anywhere from 
0-12GB - depending on the GPU. As global memory is 
off-chip, there is a high cost to read from it (compared to 
other methods); global memory requires up to 600 cycles to 
be accessed. However, it is also the simplest storage method 
to implement, and thus will likely be included as part of a 
feasibility demo. 
 
  



 

3.1.1.1 Coalesced Memory Accesses 
To achieve optimal memory access speeds, reads and writes 
should be coalesced. When a thread requests access to a 
location in memory it is given access to multiple locations 
which collectively form a chunk; all threads in the same 
bock have access to this chunk. Fetching new blocks costs 
additional memory transactions which ultimately reduce 
performance. As such, the requested data should be 
optimised for adjacent storage - it should be coalesced. 
 
3.1.2 Shared Memory 
When shared memory is used, a portion of the cache is 
semi-permanently allocated. The portion is what is referred 
to as shared memory. As the cache is on-chip, it is 
significantly faster than global memory.  
 
In CUDA, there are four cache preferences that can be 
applied; these cache preferences state how the cache should 
be divided up. For example, CudaFuncCachePreferShared 
will allocate most of the space to Shared memory and leave 
at least 16kb of the space for the L1 cache.  While shared 
memory has the potential to improve the solution efficiency, 
reducing the available cache may have knock-on effects in 
other areas of the application. A version utilising shared 
memory will be implemented to demonstrate the 
performance benefits and costs. 
 
3.1.3 Texture Memory 
Texture memory is off-chip just like global memory, 
however, unlike global memory it is read-only. The key area 
of interest is the texture cache which is optimised for 
read-only access. Making use of it does not require 
sacrificing any of the main L1 or L2 cache. Unlike global 
memory, it does not require accesses to be coalesced for 
optimal performance. In ‘Communication-minimizing 2D 
convolution in GPU registers’ (Iandola. F.N et al, 2013) the 
authors demonstrated a 7 fold improvement in bandwidth 
from shared memory to texture memory. The 
implementation using texture memory will likely be the 
fastest version, if the read access speed is consistent. 
 
3.2 Algorithms 
In the area of pattern matching there are two process types; 
single pattern matching and multi pattern matching. Single 
pattern matching involves checking each pattern individually 
against a string, whereas in multi pattern matching, all 
patterns are compared simultaneously. Multi pattern 
matching is well suited to comparing multiple signatures, 
and thus, only multi pattern algorithms will be implemented. 
 
3.2.1 HEPFAC Version 1 
In ‘High performance pattern matching and data remanence 
on graphics processing units’ (Bellekens, X. 2016), 
Bellekens presents the ‘Highly Efficient Parallel Failureless 
Aho-Corasick (HEPFAC) algorithm. Version one of this 
algorithm stores the trie structure required by Aho-Corasick 
as a one dimensional row major ordered breadth-first array 
of structures (containing an offset and bitmap/s). Use of the 
trie structure allows for comparison of multiple patterns 
simultaneously as each node can represent multiple patterns. 
For instance, any patterns that start with ‘A’ shall share the 
same first ‘A’ node. The trie structure is also compressed to 
save further space; patterns with exactly the same suffixes 
are merged as can be seen in Figure 1. 

 

 
Figure 1: Merged Suffixes (Bellekens, X. 2016) 

 
As traditional methods of representing the trie were not very 
space efficient, a new approach was required. In HEPFAC, 
each node is not aware of their identity, only that of their 
children. Each node is made up of a bitmap (or bitmaps 
depending on the alphabet size) which identify the children 
this node has, and an integer which represents the index of 
the first child. As the patterns are alphabetically sorted 
before the trie is built, the children of each node will be 
placed in alphabetical order too. By performing a population 
count on the bitmaps within each node, the number of 
children can be found. Equally, the location of a given child 
can be found by performing a population count upto the 
given child; if the child exists, its location will be the sum of 
the population count and offset of the first child. This 
method ensures each node will always be of a fixed size, 
which reduces the complexity of the GPU memory 
allocation. However, both the patterns and text strings are 
stored in global memory which is relatively simple to 
implement regardless.  
 
The search process is as follows (for each thread); starting at 
the root node, check if the current compare character is any 
of the children of this node. If it is, let that node be the 
current node, otherwise exit. If the current node is the end 
node, the last character in a pattern has been reached - a 
match has been found. 
 
 
3.2.2 HEPFAC Version 2 
 
In HEPFAC version 2, the build process is mostly the same, 
although some modifications are made to the storage method 
“The modification helps finding the first child of the current 
node while using a two dimensional matrix instead of the 
row major ordered array”. The main difference is the 
structure of the nodes; in version 1 (Figure 2 - top) each 
node was self contained, in version 2 (Figure 2 - bottom) the 
nodes coexist in a two dimensional matrix. Each row of the 
matrix is one Node in the trie. Assuming the ASCII alphabet 
is in use, the first 8 columns of each row contain the 8 
bitmaps of each node, while the 9th column contains the 
offset.  
 
 



 

 
Figure 2: Memory Scheme Transformation (Bellekens, X. 2016) 

 
In ‘Trie Compression for GPU Accelerated 
Multi-Pattern Matching’ (Bellekens, X. et al, 2017), the 
author describes the HEPFACv2 algorithm as a GPGPU  
multi-pattern matching that demonstrates “85% less space 
requirements than the original highly efficient parallel 
failure-less Aho-Corasick”, and demonstrates “over 22 
Gbps” throughput. Kargus, Gnort and NBA all made use of 
the original Aho-Corasick algorithm, an implementation of 
this algorithm should prove even faster. 
 
Utilising HEPFACv2, excellent results were seen in ‘GLoP: 
Enabling Massively Parallel Incident Response Through 
GPU Log Processing’ (Bellekens, X. et al, 2017), in which 
the authors compared the use of the texture cache to global 
memory. Regarding a comparison of the two types, the 
authors found that “the implementation using the texture 
memory achieves double throughput compared to the 
implementation that uses global memory”. 
 
In this version, the patterns are stored in global memory and 
the comparison text is stored in texture memory, which 
provides the performance benefits of the texture cache.  
However, by utilising texture memory for both, or utilising a 
combination of texture and shared memory, it may be 
possible to produce even greater results. 
 
3.3 GPGPU Optimisation 
By considering the architecture and algorithms utilised, 
optimisations from other works could be implemented where 
applicable. For instance, the buffered memory transfers as 
seen in Kargus would reduce the number of memory 
transactions required to move the same amount of data, thus 
reducing overhead. 
 
In ‘Adaptive Optimization   l1 -Minimization Solvers on 
GPU’ (Gao, J. et al, 2017), the authors explored the use of 
the texture cache (as opposed to shared or global memory). 
They were able to reduce the execution time significantly as 
described: “We see that for all test cases, the execution time 
ratios have been sustained at around 1.2”; execution time 
was reduced by 20%.  
 

In ‘GPU I/O persistent kernel for latency bound systems’ 
(Martinelli. M, 2017), a method of minimizing launch 
latency is presented. Martinelli found that  by creating a 
persistent kernel (as opposed to relaunching with each 
dataset) the user/kernel space switch latency was eliminated; 
the kernel launch overhead is reduced to a single launch. 
Preliminary results demonstrated a consistent improvement. 
The persistent kernel optimisations will be implemented if 
time permits, however, it is not an essential optimisation. 
 
3.4 Measuring Performance 
 
Performance of the solution will be evaluated and tested 
against packet generation tools such as Pktgen, or publically 
available datasets. Performance evaluations will primarily 
focus on effective throughput, in GBps. Baselines will be 
established for packet collection speed and memory write 
speeds. Performance can only be measured when there are 
no other tasks. If possible, the final solution will be tested on 
multiple hardware configurations to provide further data sets 
for comparison. 
 
4. Summary 
With attempts to breach networks and information systems 
skyrocketing in recent years, the need for high throughput 
Network Intrusion Detection Systems will only grow. 
Despite the potential of GPGPU, notable open source 
solutions still favour CPU detection engines. Prior research 
is simply not documented well enough to enable 
implementation.  
 
The proposed project aims to develop a GPGPU 
signature-based detection engine for NIDSs, and thus 
provide significant performance improvements on 
commodity hardware. As signature detection is a form of 
pattern matching, the results will be relevant to other areas of 
high performance computing; pattern matching can be 
applied to areas such as DNA sequencing or Hard Drive and 
Memory Forensics. Unlike prior research, the proposed 
solution will not use any privately owned components, and 
thus will be open sourced to encourage adoption of the 
explored techniques. 
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