

An Investigation of GPGPU Optimisations for High
Bandwidth Network Intrusion Detection Systems

Andrew Calder

School of Design and Informatics
Abertay University

DUNDEE, DD1 1HG, UK
Word Count: 3414

ABSTRACT
Context
As computer networks have experienced rapid growth, so too
has the volume of data processing required; it is increasingly
difficult to provide both security and performance. NIDS
(Network Intrusion Detection Systems) are one of the first
lines of defense in network security, as such, they are subject
to increasingly intensive loads. While availability and ease of
deployment has improved, existing open source solutions are
heavily reliant on CPU-based detection engines which are
expensive to scale appropriately for high bandwidth
networks. However, using GPGPUs (General Purpose
Graphics Processing Units), the same data could be
processed in a far more scalable manner at a fraction of the
cost

Aim
The aim of this project is to develop a GPGPU based
detection engine for NIDS, and thus provide significant
performance improvements on commodity hardware. A
signature based solution is proposed, focusing on optimizing
key components to maximize throughput.

Method
Project execution will begin with extensive research into the
design and implementation of NIDS, as well as optimization
for common -and subject specific- GPGPU design patterns.
The findings will be used to cohesively develop a NIDS for
linux-based operating systems, utilising CUDA and C++.
Finally, performance of the solution will be evaluated and
tested against packet generation tools and publically
available datasets.

Results
The finished solution will be evaluated against a variety of
publicly available datasets and packet generation tools.
Performance of the application, measured as throughput, will
be used to compare the base application, optimisations, and
existing solutions. Worthwhile optimisations (those that
produced substantial improvements) will be highlighted to
guide future work.

Conclusion
As the demand for high performance networks faces
exponential growth due to ever-improving data-links, so too
does the need for high performance Network Intrusion
Detection Systems. The system proposed in this paper will
make use of both GPGPU and optimisations to maximise

throughput on commodity hardware.

Keywords
Network Intrusion Detection Systems, Optimisation, Pattern
Matching, CUDA, GPGPU, Network Security

1. CONTEXT
Attempts to breach networks and information systems have
skyrocketed in recent years. According to the Cyber
Breaches Survey 2018, 43% of businesses have experienced
some form of cyber attack this year (Department for Digital,
Culture, Media & Sport, 2018), 19% higher than 2016.
Improvements in network infrastructure have benefitted
genuine and malicious traffic alike. With the advancement of
data links, average network throughput has risen to 10Gbps,
with 40Gbps set to become the defacto standard in the near
future (Khalil, 2015). As such, the need for equally high
throughput network security systems will only grow.

Network Intrusion Detection Systems are a software solution
for automatically identifying possible security incidents.
They act as the first line of defence in many network
configurations; performing malware detection, data
categorization, and other use-specific rulesets on traffic.
There are three main detection methodologies;
signature-based, anomaly-based, and stateful protocol
analysis (NIST, 2007). Signature detection involves
comparing patterns called signatures against known bad
signatures. Signature detection is very effective at detecting
known threats (NIST, 2007) but due to the pattern matching
process, it is computationally expensive.

Pattern matching itself is a relatively simple task, the issue
lies in the sheer number of comparisons that need to be made
to find a match. The obvious solution is to split the task
across multiple threads - executing the comparisons in
parallel. Two notable CPU-based open source Network
Intrusion Detection Systems -Snort and Suricata- have
exploded in popularity. Despite the adoption of
multithreaded processing techniques, neither is able to keep
up with a fully saturated 10 Gbps data link (Khalil, 2015).
Without specialized -often expensive- hardware, these open
source solutions are incapable of achieving the level of
throughput expected of modern networks.

As per operational requirements in modern computing, each
core in a CPU can execute instructions independently and
support a complex instruction set. As such, they are rather
large; limiting the number of cores a CPU can have. In
contrast, a GPU is made up of many tiny simple cores,

making it appear perfectly suited for pattern matching.
Pattern detection can be described as a highly parallel task; it
should scale well with GPGPU parallelism.

The aim of this project is to investigate whether a
highly-parallel GPGPU-optimized signature-based Network
Intrusion Detection System can outperform existing
CPU-based solutions. The proposed solution focuses on
maximising throughput and improving availability through
support for commodity hardware.

As signature detection is a form of pattern matching, the
teachings may be relevant beyond the scope of this project.
High throughput pattern matching can be applied to other
areas such as DNA sequencing or Hard Drive and Memory
Forensics.

2. BACKGROUND
Despite the potential of GPGPU, notable open source
solutions still favour CPU detection engines. Snort only
recently received multithreaded support, with no GPGPU
support in sight. Meanwhile Suricata did at least explore
GPGPU support. However, it is scarcely documented and
development seems to have stalled; on the support page
CUDA support is listed as “unmaintained, currently in
various stages of brokenness” (openinfosecfoundation.org,
n.d.). While it is possible that there has been some
commercial development, there have been no notable open
source GPGPU NIDS advancements since 2013.

2.1 Operation of NIDS
The operation of Network Intrusion Detection Systems can
be broken down into three main processes; packet
acquisition, ruleset processing, and response. Most of the
processes involved in packet acquisition are very much
hardware reliant. Typically (on linux based operating
systems), packets will be fetched directly from the kernel
buffer using libraries such as libpcap, netmap, or abstraction
layers based upon these libraries. As the name suggests,
ruleset processing interprets and enforces rules on traffic, for
example performing an action when a file that matches a
specified signature is seen. Responses quite simply dictate
what actions are taken, such as an alert email.

2.2 Use of GPGPUs in NIDS
Prior research into GPGPU based NIDS has yielded
promising results, however, said research has explored
constituent optimizations, whereas this project seeks a more
cohesive approach.

In ‘Gnort: High Performance Network Intrusion
Detection Using Graphics Processors’ (Vasiliadis et al.
2008), Vasiliadis achieves a throughput of 2.3Gbps through
the utilisation of GPGPUs and a buffered memory design to
“offload pattern matching computation”. Gnort uses separate
buffer types for different classifications of packets; once a
buffer is full, all packets are transferred to the GPU in one
operation, if a buffer is not full after 100ms it is transferred
anyway - preventing stranded packets. Additionally, a
“double buffering scheme” is used, which ensures packets
can be stored for processing, even if the GPU is currently
operating on packets matching that classification.

The paper ‘Kargus: a highly-scalable software-based
intrusion detection system’ (Jamshed et al. 2012) describes

another Snort based NIDS. Kargus utilizes packet acquisition
techniques from “the PacketShader software router” which
also uses a buffered approach to prevent frequent costly
kernel and userspace context switches. Opportunistic load
balancing is used to “prevent excessive power consumption”;
should the rate of incoming traffic be within a predetermined
throughput threshold, packets will be processed by the CPU
instead of the GPU. Kargus is not open source meaning the
exact methods of performing the above can not be reviewed
or further developed:“The IDS source code is not available
to the public, as it contains a derivation from
industry-transferred code”.

In ‘NBA (network balancing act): a high-performance packet
processing framework for heterogeneous processors’ (Kim, J
et al. 2015) -a continuation of the works presented in
Kargus, the authors achieve “near 30 Gbps” throughput
using the techniques described previously with a sixteen core
dual Intel Xeon system equipped with two Nvidia GTX 680
GPUs, 32GB of RAM, and four dual-port 10GbE network
interface cards. The paper reveals that the packet parsing
library used in Kargus ‘Click-Parser’ is open-source.
However, no further documentation is provided and the
parser has not been updated since 2015, limiting its
usefulness.

3. METHOD
Project execution will begin with extensive research into the
design and implementation of NIDS, as well as optimization
for common -and subject specific- GPGPU design patterns.
This research will be broken down into three main areas;
GPU Architecture, Algorithms, and GPU Optimisation. The
findings will be used to cohesively develop a NIDS for
linux-based operating systems, utilising CUDA and C++.
The final solution will be available as open source to
encourage adoption of the explored techniques.

3.1 GPU Architecture
Before delving into algorithms and optimisations, the GPU
architecture must first be considered. Consideration of the
underlying architecture could make a big difference to
performance. GPUs allow for a great deal of user
specification, especially so for memory access. In CUDA
there are three main types of device memory; Global,
Shared, and Texture. Each type has pros and cons, and thus
some are better suited for certain tasks than others, as
proof,each type will be implemented for comparison.
Consideration of the GPU architecture will also help
maximise potential of algorithm implementations.

3.1.1 Global Memory
In CUDA, global memory refers to off-chip DRAM
(Iandola, F.N. et al, 2013). Just like in a CPU, the global
memory is backed by a L1 and L2 cache. Currently, as far as
the author is aware, global memory can be anywhere from
0-12GB - depending on the GPU. As global memory is
off-chip, there is a high cost to read from it (compared to
other methods); global memory requires up to 600 cycles to
be accessed. However, it is also the simplest storage method
to implement, and thus will likely be included as part of a
feasibility demo.

3.1.1.1 Coalesced Memory Accesses
To achieve optimal memory access speeds, reads and writes
should be coalesced. When a thread requests access to a
location in memory it is given access to multiple locations
which collectively form a chunk; all threads in the same
bock have access to this chunk. Fetching new blocks costs
additional memory transactions which ultimately reduce
performance. As such, the requested data should be
optimised for adjacent storage - it should be coalesced.

3.1.2 Shared Memory
When shared memory is used, a portion of the cache is
semi-permanently allocated. The portion is what is referred
to as shared memory. As the cache is on-chip, it is
significantly faster than global memory.

In CUDA, there are four cache preferences that can be
applied; these cache preferences state how the cache should
be divided up. For example, CudaFuncCachePreferShared
will allocate most of the space to Shared memory and leave
at least 16kb of the space for the L1 cache. While shared
memory has the potential to improve the solution efficiency,
reducing the available cache may have knock-on effects in
other areas of the application. A version utilising shared
memory will be implemented to demonstrate the
performance benefits and costs.

3.1.3 Texture Memory
Texture memory is off-chip just like global memory,
however, unlike global memory it is read-only. The key area
of interest is the texture cache which is optimised for
read-only access. Making use of it does not require
sacrificing any of the main L1 or L2 cache. Unlike global
memory, it does not require accesses to be coalesced for
optimal performance. In ‘Communication-minimizing 2D
convolution in GPU registers’ (Iandola. F.N et al, 2013) the
authors demonstrated a 7 fold improvement in bandwidth
from shared memory to texture memory. The
implementation using texture memory will likely be the
fastest version, if the read access speed is consistent.

3.2 Algorithms
In the area of pattern matching there are two process types;
single pattern matching and multi pattern matching. Single
pattern matching involves checking each pattern individually
against a string, whereas in multi pattern matching, all
patterns are compared simultaneously. Multi pattern
matching is well suited to comparing multiple signatures,
and thus, only multi pattern algorithms will be implemented.

3.2.1 HEPFAC Version 1
In ‘High performance pattern matching and data remanence
on graphics processing units’ (Bellekens, X. 2016),
Bellekens presents the ‘Highly Efficient Parallel Failureless
Aho-Corasick (HEPFAC) algorithm. Version one of this
algorithm stores the trie structure required by Aho-Corasick
as a one dimensional row major ordered breadth-first array
of structures (containing an offset and bitmap/s). Use of the
trie structure allows for comparison of multiple patterns
simultaneously as each node can represent multiple patterns.
For instance, any patterns that start with ‘A’ shall share the
same first ‘A’ node. The trie structure is also compressed to
save further space; patterns with exactly the same suffixes
are merged as can be seen in Figure 1.

Figure 1: Merged Suffixes (Bellekens, X. 2016)

As traditional methods of representing the trie were not very
space efficient, a new approach was required. In HEPFAC,
each node is not aware of their identity, only that of their
children. Each node is made up of a bitmap (or bitmaps
depending on the alphabet size) which identify the children
this node has, and an integer which represents the index of
the first child. As the patterns are alphabetically sorted
before the trie is built, the children of each node will be
placed in alphabetical order too. By performing a population
count on the bitmaps within each node, the number of
children can be found. Equally, the location of a given child
can be found by performing a population count upto the
given child; if the child exists, its location will be the sum of
the population count and offset of the first child. This
method ensures each node will always be of a fixed size,
which reduces the complexity of the GPU memory
allocation. However, both the patterns and text strings are
stored in global memory which is relatively simple to
implement regardless.

The search process is as follows (for each thread); starting at
the root node, check if the current compare character is any
of the children of this node. If it is, let that node be the
current node, otherwise exit. If the current node is the end
node, the last character in a pattern has been reached - a
match has been found.

3.2.2 HEPFAC Version 2

In HEPFAC version 2, the build process is mostly the same,
although some modifications are made to the storage method
“The modification helps finding the first child of the current
node while using a two dimensional matrix instead of the
row major ordered array”. The main difference is the
structure of the nodes; in version 1 (Figure 2 - top) each
node was self contained, in version 2 (Figure 2 - bottom) the
nodes coexist in a two dimensional matrix. Each row of the
matrix is one Node in the trie. Assuming the ASCII alphabet
is in use, the first 8 columns of each row contain the 8
bitmaps of each node, while the 9th column contains the
offset.

Figure 2: Memory Scheme Transformation (Bellekens, X. 2016)

In ‘Trie Compression for GPU Accelerated
Multi-Pattern Matching’ (Bellekens, X. et al, 2017), the
author describes the HEPFACv2 algorithm as a GPGPU
multi-pattern matching that demonstrates “85% less space
requirements than the original highly efficient parallel
failure-less Aho-Corasick”, and demonstrates “over 22
Gbps” throughput. Kargus, Gnort and NBA all made use of
the original Aho-Corasick algorithm, an implementation of
this algorithm should prove even faster.

Utilising HEPFACv2, excellent results were seen in ‘GLoP:
Enabling Massively Parallel Incident Response Through
GPU Log Processing’ (Bellekens, X. et al, 2017), in which
the authors compared the use of the texture cache to global
memory. Regarding a comparison of the two types, the
authors found that “the implementation using the texture
memory achieves double throughput compared to the
implementation that uses global memory”.

In this version, the patterns are stored in global memory and
the comparison text is stored in texture memory, which
provides the performance benefits of the texture cache.
However, by utilising texture memory for both, or utilising a
combination of texture and shared memory, it may be
possible to produce even greater results.

3.3 GPGPU Optimisation
By considering the architecture and algorithms utilised,
optimisations from other works could be implemented where
applicable. For instance, the buffered memory transfers as
seen in Kargus would reduce the number of memory
transactions required to move the same amount of data, thus
reducing overhead.

In ‘Adaptive Optimization l1 -Minimization Solvers on
GPU’ (Gao, J. et al, 2017), the authors explored the use of
the texture cache (as opposed to shared or global memory).
They were able to reduce the execution time significantly as
described: “We see that for all test cases, the execution time
ratios have been sustained at around 1.2”; execution time
was reduced by 20%.

In ‘GPU I/O persistent kernel for latency bound systems’
(Martinelli. M, 2017), a method of minimizing launch
latency is presented. Martinelli found that by creating a
persistent kernel (as opposed to relaunching with each
dataset) the user/kernel space switch latency was eliminated;
the kernel launch overhead is reduced to a single launch.
Preliminary results demonstrated a consistent improvement.
The persistent kernel optimisations will be implemented if
time permits, however, it is not an essential optimisation.

3.4 Measuring Performance

Performance of the solution will be evaluated and tested
against packet generation tools such as Pktgen, or publically
available datasets. Performance evaluations will primarily
focus on effective throughput, in GBps. Baselines will be
established for packet collection speed and memory write
speeds. Performance can only be measured when there are
no other tasks. If possible, the final solution will be tested on
multiple hardware configurations to provide further data sets
for comparison.

4. Summary
With attempts to breach networks and information systems
skyrocketing in recent years, the need for high throughput
Network Intrusion Detection Systems will only grow.
Despite the potential of GPGPU, notable open source
solutions still favour CPU detection engines. Prior research
is simply not documented well enough to enable
implementation.

The proposed project aims to develop a GPGPU
signature-based detection engine for NIDSs, and thus
provide significant performance improvements on
commodity hardware. As signature detection is a form of
pattern matching, the results will be relevant to other areas of
high performance computing; pattern matching can be
applied to areas such as DNA sequencing or Hard Drive and
Memory Forensics. Unlike prior research, the proposed
solution will not use any privately owned components, and
thus will be open sourced to encourage adoption of the
explored techniques.

5. REFERENCES
Bellekens, X., Seeam, A., Tachtatzis, C. and Atkinson, R.,
2017. Trie compression for GPU accelerated multi-pattern
matching. arXiv preprint arXiv:1702.03657.

Bellekens, X.J., Tachtatzis, C., Atkinson, R.C., Renfrew, C.
and Kirkham, T., 2014, September. Glop: Enabling
massively parallel incident response through gpu log
processing. In Proceedings of the 7th International
Conference on Security of Information and Networks (p.
295). ACM.

Bellekens, X.J., 2016. High performance pattern matching
and data remanence on graphics processing units (Doctoral
dissertation, University of Strathclyde).

Department for Digital, Culture, Media & Sport (2018).
Cyber Security Breaches Survey 2018: Statistical Release.
Department for Digital, Culture, Media & Sport, p.1.

Gao, J., Li, Z., Liang, R. and He, G., 2017. Adaptive
Optimization $$ l_1 $$ l 1-Minimization Solvers on GPU.
International Journal of Parallel Programming, 45(3),
pp.508-529.

Khalil, G. (2015). Open Source IDS High Performance
Shootout. [Blog] SANS Institute InfoSec Reading Room.
Available at:
https://www.sans.org/reading-room/whitepapers/intrusion/op
en-source-ids-high-performance-shootout-35772 [Accessed
1 Oct. 2018].

Kim, J., Jang, K., Lee, K., Ma, S., Shim, J. and Moon, S.,
2015, April. NBA (network balancing act): A
high-performance packet processing framework for
heterogeneous processors. In Proceedings of the Tenth
European Conference on Computer Systems (p. 22). ACM.

NIST (2007). Guide to Intrusion Detection and Prevention
Systems (IDPS). Gaithersburg, MD: National Institute of
Standards and Technology, U.S. Department of Commerce,
pp.3, 4.

Redmine.openinfosecfoundation.org. (n.d.). Support Status -
Suricata - Open Information Security Foundation. [online]
Available at:
https://redmine.openinfosecfoundation.org/projects/suricata/
wiki/Support_Status [Accessed 8 Oct. 2018].

Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos,
E.P. and Ioannidis, S., 2008, September. Gnort: High
performance network intrusion detection using graphics
processors. In International Workshop on Recent Advances
in Intrusion Detection (pp. 116-134). Springer, Berlin,
Heidelberg.

Iandola, F.N., Sheffield, D., Anderson, M.J., Phothilimthana,
P.M. and Keutzer, K., 2013, September.
Communication-minimizing 2D convolution in GPU
registers. In Image Processing (ICIP), 2013 20th IEEE
International Conference on (pp. 2116-2120). IEEE.

Martinelli, M., 2017, GPU I/O persistent kernel for latency
bound systems. In Proceedings of the 26th International
Symposium on High-Performance Parallel and Distributed
Computing

